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ABSTRACT

The effects of quantum confinement and many-body interactions on the optical

and transport properties of semiconductor quantum dots are investigated within the

framework of the empirical tight-binding model. The exciton levels of optically ex-

cited dots and the electron and hole addition energies of multiply charged dots are

described by incorporating many-body interactions, electron-hole dipole moments,

and polarization of the dot environment into the tight-binding model. We choose Si

quantum dots as an example of an indirect gap semiconductor, and InAs and CdSe

dots as examples of typical III-V and II-VI direct-gap semiconductors. To mimic

chemically synthesized quantum dots, the dot structure is modeled as a spherical and

unstrained crystallite with the surface dangling bonds truncated.

Electron and hole single-particle energies are significantly improved by optimizing

tight-binding parameters and by extending tight-binding basis orbitals to give the

best description of the lowest conduction and the highest valence bands. For Si dots,

the exciton gaps calculated with the parameters, optimized to give the good effective

mass of the lowest conduction band near its minimum, agree well with experimental

gaps. For InAs dots, the inclusion of spin-orbit coupling and d orbitals in a single-

particle Hamiltonian increases a single-particle gap as much as 0.2 eV, yielding better

agreement with experiments in terms of several low-lying bright-exciton energies and

addition energies.
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Quantitatively, tight-binding treatments of Coulomb interactions are reliable for

dots with radii larger than 15–20 Å. In direct-gap semiconductor InAs and CdSe quan-

tum dots, the exchange interaction can be long-ranged, extending over the whole dot

when there is no local orthogonality between the electron and hole wave functions. In

contrast, for Si quantum dots the extra phase factor due to the indirect gap effectively

limits the range to about 15 Å, independent of the dot size.

For optically excited quantum dots, calcualted exciton gaps of Si and CdSe dots

with radius 10–40 Å and the three lowest bright exciton energies of InAs dots with

radius larger than 20 Å agree well with photoluminescence experiments. For multiply

charged dots, calculated low-lying addition energies of InAs dots with radius 10–40 Å

are in good agreement with scanning tunneling miscroscope experiments.
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CHAPTER 1

INTRODUCTION

What one fool can understand, others can. - Richard P. Feynman

Recent advances in semiconductor quantum dot fabrications have opened up a rich

opportunity to study zero-dimensional quantum systems of various sizes, shapes, and

materials [1, 2, 3, 4]. Quantum confinement and enhanced many-body interactions

in the quantum dots lead to optical and transport properties that are dramatically

different from those of higher dimensional and bigger systems [3, 4, 5, 6]. To utilize

the unique properties, many applications such as low-threshold lasers, single-electron

devices, memories, detectors, single photon emitters, and quantum information de-

vices have been proposed, and are being developed [7, 8, 9, 10, 11, 12]. Hence, the

accurate modeling of the quantum confinement and many-body interactions is not

only of fundamental interest, but is also important to help tailor quantum dots for a

specific application.

Various theoretical approaches are used to study the quantum dots, ranging from

first principle calculations to empirical models [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Due to the generally high computational demand of the first principle calculations,

empirical models are widely employed to study quantum dots with sizes comparable
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to experimental dots. The three empirical models primarily used are the multiband

effective-mass approximation [16], the pseudo-potential model [18, 19], and the tight-

binding model [20, 21, 22, 23]. The effective-mass approximation treats quantum

dots as a confined bulk system, while the pseudo-potential and tight-binding models

include atomistic descriptions of ionic potentials in the dot. The distinction between

the two atomistic models lies in the degree of atomic detail included in the model.

Within the tight-binding model, the atomistic detail is limited to a small basis set,

while in the pseudo-potential model a detailed local variation of wave functions is

described with a large basis set. Therefore, the tight-binding model is computa-

tionally less costly than the pseudo-potential model. The tight-binding model is a

good candidate for the study of relatively big, complicated systems where both the

computational efficiency and atomistic description are required. An example of such

a system is vertically stacked, self-assembled quantum dots which contain not only

millions of atoms but also a thin barrier and sharp edges and points [24]. Because

of the computational efficiency of this atomistic model, we choose the tight-binding

model to study quantum dots.

Modeling chemically synthesized quantum dots is a good starting point to test the

applicability of the tight-binding model to quantum dots. The chemically synthesized

dots are unstrained and spherical due to the flexible surrounding materials [3]. The

dot sizes are easily controlled by changing chemical-synthesis conditions [25]. The

simple tuning of the dot size enables the study of size dependent properties without

involving such complexities as strains and shapes. In this work, we examine the

accuracy of the tight-binding model in describing the optical and transport properties

of chemically synthesized quantum dots with a wide range of sizes.
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Recently, two types of complementary experiments have provided a comprehensive

picture of the many-body levels of quantum dots [26, 27, 28, 29]. First, photolumi-

nescence excitation (PLE) experiments manifest exciton levels by optically creating

electron-hole pairs [26, 27]. Second, scanning tunneling microscope (STM) experi-

ments probe individual electron (or hole) levels by consecutively charging the dot

with one electron (or one hole) at a time [28, 29]. Both the electron-hole pair cre-

ation and the electron (or hole) addition probe the single-particle levels of the dots.

However, different perturbative interactions are inherent in each experiment. The

electron-hole pair creation involves electron-hole interactions, while the electron (or

hole) addition induces the extra-charge-carrier interactions and the polarization of

the dot environment. Furthermore, the electron-hole pair creation is an optically se-

lective process. In spherical dots, the optical selection rules are determined by almost

exact conservation of angular momenta.

Motivated by the two types of experiments, we study the many-body levels of op-

tically excited and multiply charged semiconductor quantum dots in the framework

of the empirical tight-binding model. We choose Si, CdSe, and InAs dots as exam-

ples of an indirect-gap material, and typical II-VI and III-V direct-gap materials,

respectively. To represent chemically synthesized dots, the dot structure is modeled

as an unstrained and spherical crystallite with perfect surface passivation. We incor-

porate electron-hole interactions and dipole transitions into the tight-binding model

to investigate the electron-hole pair levels of the optically excited dots. The electron

and hole addition energies of the multiply charged dots are described by the sum

of single-particle energies and charging energies. The present model includes three
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types of charging energies: (i) self-polarization energies, (ii) charge-carrier Coulomb

energies, and (iii) electron-removal work functions.

The remainder of the dissertation is structured as follows. In the remainder of this

chapter, we provide a brief overview of quantum dots, the two types of experiments,

and the three empirical models primarily used for quantum-dot studies. In Chapter 2,

we discuss the present tight-binding model for the single-particle levels of Si, CdSe,

and InAs dots. Chapter 3 describes the electron-hole pair levels of optically excited

quantum dots. In Chapter 4, we model the electron and hole addition energies of

multiply charged quantum dots. Finally, Chapter 5 provides a brief summary of the

key results of the present work and a final remark on future work directions.

1.1 Quantum Dots

Quantum dots are nanometer-scale, three-dimensionally confined systems. With

respect to system sizes, quantum dots are intermediate between molecular and bulk

systems. Hence, the structure of the dot shows both molecular and bulk features.

The interior of the quantum dot contains a crystal structure which resembles a bulk

crystal. However, the periodicity of the crystal is violated near the dot surface before

the dot size reaches an infinite volume limit. Quantum dots are surrounded by foreign

materials whose conduction and valence band edges are different from those of the

dots. If the conduction and valence band edges of the surrounding material are higher

and lower than those of the dots as shown in Fig. 1.1, both electrons and holes can

be confined in the dots.

The three-dimensional quantum confinement of electrons in semiconductor quan-

tum dots leads to discrete electronic levels with their spacings typically exceeding
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room temperature. Figure 1.2 shows the evolution of the density of states as the

effective dimensionality of systems reduces. As more dimensions are confined, the

density of states becomes less continuous, and eventually becomes delta-function like

in the zero-dimensional quantum dots. Because of its discrete level structure, the

quantum dot is often referred to as an artificial atom.

Because of the discrete level structures of quantum dots, the electrical and opti-

cal properties of the quantum dots are qualitatively different from those of higher-

dimensional systems such as bulk, quantum-well, and quantum-wire systems. For

example, electrons confined in quantum dots exhibit slow intersubband relaxation

times due to a reduced electron-phonon interaction. Furthermore, optical excita-

tions and electrical transport in quantum dots depend strongly on the dot sizes. As

the size is reduced, the electronic excitation energies increase due to the increase of

electron kinetic energies. For instance, the absorption onset of CdSe quantum dots

vary from deep red (1.7 eV) to green (2.4 eV) when the size decreases from 200 to

20 Å [25]. Thanks to their unique and size tunable properties, quantum dots are

proposed as building units of various nano-devices such as low-threshold lasers, novel

single-electron devices, memories, detectors, single-photon emitters, and quantum

information devices.

Quantum dots are fabricated typically by one of the three different methods: (i)

a combined method of lithography and epitaxy, (ii) Stranski-Krastanow epitaxy, and

(iii) a chemical synthesis. Figure 1.3 illustrates the general shapes and sizes of the

quantum dots produced by the three methods. The combined method of lithography

and epitaxy generates a vertical quantum dot whose vertical size is much smaller than

its lateral sizes. Typically, the vertical size is on the order of 10 nm while the lateral
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Matrix MatrixQuantum Dot

Valence Band

Conduction Band

Figure 1.1: Schematic diagram of band edges of the quantum dot embedded in a
larger-gap material. The higher conduction band edge of the surrounding matrix
provides a barrier potential to confine electrons in the dot, while the lower valence
band edge of the matrix confines holes.

size is on the order of 100 nm. The Stranski-Krastanow epitaxy uses the strain induced

by a lattice mismatch between a dot and a surrounding material [30]. A typical

example of this kind of dot is an InAs dot embedded in GaAs. Because the lattice

constant of InAs is 7.2 % larger than GaAs, only a thin layer of InAs can grow on a

GaAs substrate before the layer breaks up into small islands, forming self-assembled

InAs quantum dots. The self-assembled dots are strained, and consequently pyramid

or lens shaped. In the chemical synthesis, the dangling bonds at the dot surfaces is

passivated with a variety of organic and inorganic ligands [25, 26, 31]. Due to the

flexibility of the ligands, chemically synthesized dots are unstrained and spherical.
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E

D(E) D(E)D(E)

E E

Bulk Quantum Well Qunatum Wire Quantum Dot

D(E)

E

Figure 1.2: Density of states for various dimensional systems ranging from three-
dimensional bulk systems to zero-dimensional quantum dots. As more dimensions
are confined, the continuities of the density of states become weaker, and eventually
disappear in the quantum dot.

10−100nm
Vertical QD Self−Assembled QD

10nm
Nanocrystal

<10nm

Figure 1.3: Typical shapes and sizes of quantum dots fabricated by three different
methods. The vertical quantum dot is produced by the combination of lithography
and epitaxy. The pyramid-shaped self-assembled dot is the product of the Stranski-
Krastanow epitaxy. The spherical nanocrystal surrounded by a flexible glass matrix
is fabricated by a chemical synthesis.
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1.2 Experimental Approaches

In this section, we present the main ideas and examples of the two experimental

approaches primarily used to study many-body level structures of quantum dots:

optical excitation and electrical excitation. The two types of experiments provide

the different aspects of the level structures, yielding a comprehensive picture of the

structure.

1.2.1 Optical Excitation

The optical excitation of quantum dots is a process of creating electron-hole pairs

in the quantum dots. The created electron-hole pair forms a bound state due to the

attractive Coulomb interaction between the electron and hole. The bound state is

called an exciton. To create excitons requires meeting two conditions. First, a photon

energy of an optical excitation source should match the energy required to create an

exciton due to the conservation of energies. Second, the total angular momentum

of an exciton should be the same as that of an absorbed photon, i.e. one, due to

the conservation of angular momenta. Therefore, the measurement of the response of

quantum dots to the optical excitation such as absorption and emission measurements

reveals the exciton level structures of the dots.

One widely used method for the measurement of the response of optically excited

quantum dots is a photoluminescence excitation experiment [26, 27]. When an en-

semble of quantum dots is excited by a laser, a wide size distribution of the quantum

dots broadens absorption spectra so that resolving the exciton levels of individual

quantum dots is difficult. The photoluminescence excitation is developed to elimi-

nate the broadening due to the size distribution. In the photoluminescence excitation
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experiment, the detection energies of photoluminescence are fixed and laser-excitation

energies are varied. If the excitation energies match the energies required to create

excitons, photons are absorbed and excitons are created. The created excitons even-

tually relax to exciton levels near the band edges, recombine, and emit photolumines-

cence. Therefore, detecting photoluminescence as a function of the laser-excitation

energies is an indirect way of measuring absorption spectra. The main difference

between the photoluminescence excitation and absorption measurements is that the

photoluminescence excitation experiment filters dot sizes by narrowing the photolu-

minescence detection energies.

1.2.2 Electrical Excitation

The electrical excitation of quantum dots is a process of consecutively charging

the quantum dots with one electron or one hole at a time. If the Fermi energy of the

material surrounding the dot is resonant with the energy required to add one electron

into the dot, an electron can be added to the dot, causing the dot to become negatively

charged. Similarly, if the Fermi energy of the surrounding material is resonant with

the negative of the energy required to remove one electron from the dot, an electron

can be removed from the dot, causing the dot to become positively charged. Removing

an electron can be seen as adding a hole. We call the energies required to add an

electron and a hole an electron and hole addition energy, respectively. The electron

and hole addition energies are composed of single-particle energies of quantum dots

and charging energies for the charge-carrier transfer. Therefore, the measurement of

the response of quantum dots to the electrical excitation manifests individual electron

and hole level structures as well as charging energies.
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Quantum 
Dot

M2J2J1M1

Figure 1.4: Schematic diagram of a double-barrier tunneling junction configuration
composed of a quantum dot, two metal leads (M1 and M2), and two insulating junc-
tions (J1 and J2).

One example of the measurement of the response of electrically excited quantum

dots is that of tunneling current between a metal lead and a quantum dot which are

separated by an insulating junction. In the experiment, the quantum dot is a part of

a double-barrier tunneling junction configuration as illustrated in Fig. 1.4. Typically,

the configuration is realized either by a transistor-type configuration [5, 6] or by a

scanning tunneling microscope [28, 32]. Measured tunneling spectra exhibit a region

of suppressed tunneling current followed by a series of steps due to the discrete levels

of quantum dots and the Coulomb blockade for charge-carrier transfer. The beginning

of the step in the tunneling spectra, i.e. the peak of the differential conductance of

tunneling current, indicates that the tunneling condition to add electrons or holes

into a dot is met. Hence, the electron and hole addition energies are equivalent to

the bias voltages which cause conductance peaks.
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1.3 Theoretical Approaches

In this section, we discuss the basic ideas and applications of three theoretical

models primarily used to study quantum dots: (i) the effective-mass approximation,

(ii) the pseudo-potential model, and (iii) the tight-binding model. Since quantum

dots are intermediate between molecular and bulk systems, to treat the quantum dot

as one of the two extreme systems is a natural starting point. The effective-mass

approximation treats the dot as a confined bulk system, while the pseudo-potential

model and the tight-binding model treat the dot as a collection of atoms.

1.3.1 Effective-Mass Approximation

The effective-mass approximation models a single-particle Hamiltonian with the

dispersion relations of bulk bands near the minimum and maximum. The kinetic en-

ergy of the single-particle Hamiltonian is described by replacing a bare electron mass

with an effective mass. The effective mass m∗ is obtained from the band curvature

near the minimum and maximum when the dispersion relation E(k) of the band is

given:

1

m∗
=

1

h̄2

∂2E(k)

∂k2

∣∣∣∣∣
k=0

. (1.1)

In the simplest case where the coupling between the lowest conduction and the highest

valence bands is negligible, the effective Hamiltonians of low-lying electron and hole

levels in quantum dots can be separately written as

He = − h̄
2∇2

2m∗e
+ Ve(r) + Eg, (1.2)

Hh = − h̄
2∇2

2m∗h
+ Vh(r), (1.3)
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where m∗e and m∗h are the electron and hole effective masses. Eg is a bulk band gap,

i.e. the energy difference between the bottom of the lowest conduction band and the

top of the highest valence band. The confinement of the quantum dot is imposed

in the potential V (r). In a spherical quantum dot, the confining potential can be

written as

V (r) = Vo Θ(r −R), (1.4)

where Θ(r − R) is the step function and R is the dot radius. The constant Vo is

determined by a band offset between the dot and the surrounding material.

The single-band effective-mass approximation can be improved by including more

bands and by allowing couplings between different bands. For example, the Luttinger-

Kohn Hamiltonian includes the contributions from the second and third highest va-

lence bands to the hole Hamiltonian [33]. This new Hamiltonian also includes the

couplings between the three valence bands, i.e. heavy-hole, light-hole, and spin-split

hole bands. Luttinger-Kohn model can be further improved by including the couplings

between the conduction and valence bands [34]. When the coupling is included, the

single-particle Hamiltonian is no longer divided into the electron and hole Hamiltoni-

ans. The coupling between the conduction and valence bands is important especially

in modeling narrow-gap semiconductor quantum dots [26].

The accuracy of the effective-mass approximation has inherent limitations due to

nonparabolic bulk bands away from Γ and the lack of atomistic descriptions of the

Hamiltonian. Since the Hamiltonian is constructed based on the parabolic dispersion

relations of bands near Γ, this approximation is valid only if relevant bands near Γ can

be approximated as parabolic curves, and relevant properties are attributed to single-

particle levels near Γ. Furthermore, since the effective-mass approximation does not
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contain the atomistic description of ionic potentials in the Hamiltonian, it cannot

provide an accurate description of quantum systems with complex surfaces and thin

barriers. The low-lying electron and holes states of quantum dots appear near Γ as

the dot size increases. Therefore, the effective-mass approximation is applicable to

relatively large quantum dots with interior properties outweighing surface properties.

1.3.2 Pseudo-Potential Model

The pseudo-potential model approximates a real potential due to ions and core

electrons with a pseudo-potential given by the condition that both potentials provide

a similar description of electron wave functions outside the core region. Within the

pseudo-potential model, the nodal features of the wave functions in the core region are

ignored. This approximation is reasonable when relevant properties are determined by

the variation of the wave function outside the core region. The typical basis orbitals

of the pseudo-potential model are plane waves. The pseudo-potential Hamiltonian H

and wave function ψ(r) are written as

H = − h̄
2∇2

2m
+
∑

i

Vps(r−Ri) (1.5)

ψ(r) =
∑

k

ck exp(ik · r), (1.6)

where Ri is the position vector of ion-core sites, and Vps is the pseudo-potential.

The basic idea of the pseudo-potential model can be applied to quantum-dot

studies by representing the ionic potentials of the dot and the surrounding mate-

rial with corresponding pseudo-potentials. In the pseudo-potential model, a barrier

potential treated as a step function in the effective-mass approximation is atomisti-

cally described by the difference between the pseudo-potentials of the dot and the

surrounding materials. Since a single-particle Hamiltonian is composed of atomistic
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pseudo-potentials in this model, a single-particle wave function contains a detailed

description of the variation between core sites. Due to the atomistic detail included in

the pseudo-potential model, the calculations of single-particle energies and wave func-

tions with this model are computationally much more demanding than the effective-

mass approximation. Therefore, the application of this model has been limited to

the studies of relatively small dots with radius smaller than 25 Å [18, 35]. However,

the progress in computer facilities and numerical algorithms will steadily extend the

application of this model to bigger quantum dots.

1.3.3 Tight-Binding Model

The tight-binding model approximates electron wave functions in solids by linear

combinations of atomic orbitals of valence electrons in atoms. This approximation is

based on the assumption that electrons in solids are tightly bound to their ions as

in atoms. This approach is opposite to the free electron model which assumes that

electrons move freely in solids so that their wave functions can be described by plane

waves. Conceptually, the assumption of the tightly bound electrons limits a scope

of the applicability of the tight-binding model within insulating materials and the

valence bands of semiconductors. However, it has been shown that the tight-binding

model can also successfully describe the electronic properties of transition metals and

the conduction bands of semiconductors by relaxing the range of interactions between

valence electrons, by empirically adjusting the interaction matrix elements, and by

expanding a basis set.

Similar to the pseudo-potential model, the tight-binding model provides an atom-

istic description of the single-particle Hamiltonian and wave function of quantum
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dots. In the tight-binding model, the single-particle Hamiltonian consists of the in-

teractions between valence electrons in presence of ionic potentials. The basis orbitals

of the tight-binding model are atomic orbitals of the valence electrons in quantum

dots which are not necessarily the same as the atomic orbitals of the valence elec-

trons in atoms. The Hamiltonian matrix elements between the basis orbitals can be

determined by either an ab initio or empirical method. In the ab initio approach,

the matrix elements are calculated with the real atomic orbitals and ionic potentials.

In contrast, the empirical tight-binding model treats the matrix elements as fitting

parameters. As an intermediate approach, there is a semi-empirical tight-binding

model where the Hamiltonian matrix elements are determined by the combinations

of atomistic calculations and empirical fittings.

The tight-binding model is computationally less demanding than the pseudo-

potential model due to its smaller number of basis orbitals. Typically, the number of

basis orbitals in the tight-binding model is one or two orders of magnitude smaller

than that in the pseudo-potential model. Due to its computational efficiency, the

tight-binding model can be used to study a wide range of dot sizes. This advantage is

one key reason that we choose the tight-binding model to study the electrical and op-

tical properties of quantum dots. The construction of the single-particle Hamiltonian

of quantum dots and the calculation of single-particle energies and wave functions

within the tight-binding model are discussed in detail in Chap. 2.

15



CHAPTER 2

SINGLE-PARTICLE LEVELS OF QUANTUM DOTS

If you have an important point to make, don’t try to be subtle or clever. Use a

pile driver. Hit the point once. Then come back and hit it again. Then hit it a third

time - a tremendous whack. -Winston Churchill, Sir

Although ideally many-body levels of quantum dots should be obtained from

many-body Hamiltonian, it is very difficult to directly solve the many-body Hamil-

tonian due to the large number of electrons involved in the Hamiltonian. Hence, we

divide the Hamiltonian into two groups: a noninteracting single-particle term and

an interaction term. The single-particle Hamiltonian can be viewed as the effective

Hamiltonian of one electron in the presence of other electrons and ions. This chapter

describes the construction of the effective single-particle Hamiltonian for Si, CdSe,

and InAs quantum dots within the empirical tight-binding model and presents major

features of electron energies and wave functions calculated with that Hamiltonian.

To imitate a chemically synthesized quantum dot which is almost unstrained and

spherical with flexible-ligand passivation, we model the dot as an unstrained, spher-

ical crystallite with perfect surface passivation. Experimental Si and InAs dots are

based on the zinc-blende structure, while experimental CdSe dots on the wurtzite
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structure. Therefore, we model Si and InAs dots as the zinc-blende crystallite. We

also model CdSe dots as the zinc-blende structure since the small value of the crystal-

splitting (25 meV) in CdSe makes it reasonable to approximate this wurtzite material

as a zinc-blende material. Dangling bonds on the surface are removed by explicitly

shifting the energies of the corresponding hybrids well above the band gap. This treat-

ment imitates a chemically synthesized dot whose surface is efficiently passivated by

hydrogen or ligand molecules.

2.1 Single-Particle Hamiltonian

Within the tight-binding model, the effective single-particle Hamiltonian of a

quantum dot results from projecting the full Hamiltonian onto a limited basis set

of atomic orbitals and imposing a cutoff on the range of the matrix elements between

the orbitals:

Hsingle =
∑

i,γ,σ,σ′
uiγσσ′|iγσ〉〈iγσ′|+

∑

i6=j,γ,γ′,σ,σ′
tijγγ′σσ′|iγσ〉〈jγ ′σ′|, (2.1)

The tight-binding basis orbital |iγσ〉 is indexed by atomic-site index i, orbital-type

index γ, and spin index σ. The symbols uiγσσ′ and tijγγ′σ are the matrix elements

between the tight-binding basis orbitals, and are usually referred to as tight-binding

parameters. The parameter uiγσσ′ accounts for the interaction between the basis

orbitals on the same ions, while tijγγ′σ is that between the basis orbitals on different

ions.

The simplest tight-binding model that can reproduce the major features of the

lowest conduction and the highest valence bands [36] involves only onsite and nearest-

neighbor matrix elements between sp3s∗ basis orbitals. Within the nearest-neighbor

sp3s∗ model, the band energies at the high symmetry points are well described [36].
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The s∗ orbital, first introduced by Vogl et al. [36] to mimic band-structure effects of

d bands, improves the conduction bands near X [36].

We choose tight-binding parameters optimized to mimic at the 10 meV level those

bands – lowest conduction and highest valence – most responsible for the low energy

excitation spectra of quantum dots. In the empirical tight-binding model, the pa-

rameters uiγσσ′ and tijγγ′σσ′ are fitted to a relevant data base given by first-principle

calculations and experiments. Since a data base for quantum dots is very limited

today, a bulk data base such as the bulk band structures predicted by first-principle

calculations and measured by experiments [37] is generally used for target values of

the fitting. Especially, the band gap, the band curvatures near the minima or maxima

of the lowest conduction and the highest valence bands are important target values

since low-lying electron levels of quantum dots originate from the band edges. We

choose the parameters that can reproduce the gap at the 10 meV level and the effec-

tive masses as well as possible. Table 2.1 lists the parameters used for Si, CdSe, and

InAs dots. Tables 2.2 and 2.3 list the band gaps and effective masses given by the

parameters.

Especially for Si dots, we use two sets of parameters optimized differently: (i)

one set optimized to give good band energies at the high symmetry points but not

optimized to give good effective masses, (ii) the other set optimized to give good

effective masses as well as good band energies, to examine to what extent the good

effective masses improve the electron levels of quantum dots. We first use the tight-

binding parameters of Vogl et al. [36]. Their parameters are fitted to only the energies

of the Γ and X points, and consequently give poor effective masses. To improve the

effective mass of Si, we also use parameters optimized with a genetic algorithm to

18



give better effective masses near the minimum of the lowest conduction band [38,

39]. Using a genetic algorithm, Klimeck et al. provided parameter sets optimized

separately for the conduction and valence bands [38]. Note that good effective masses

for both conduction and valence band are impossible to obtain simultaneously with

one parameter set within the nearest-neighbor sp3s∗ tight-binding model [38]. As

a result, the conduction- and valence-electron wave functions, being generated from

different Hamiltonians, are not orthogonal. Even though the orthogonality has not

been enforced, the overlaps between the single-particle wave functions from the two

Hamiltonians are at most 0.001. Thus, we can use these two different parameter sets

to verify how important a role the effective masses play in the level structures of

quantum dots. Table 2.2 lists the resulting effective masses of the lowest conduction

and the highest valence bands with the parameters of Vogl et al. and those with the

two parameter sets of Klimeck et al. The effective masses given by the parameters

of Klimeck et al. agree much better with experimental values than those of Vogl et

al. Especially, the electron transverse effective mass is improved the most by the

parameters of Klimeck et al.

For InAs dots, (i) to improve valence electron levels we include spin-orbit coupling

within the same sp3s∗ basis set and (ii) to improve conduction electron levels we

extend the basis set to sp3d5s∗. The InAs bulk band structure is challenging to

describe. It has a narrow band gap (0.42 eV) and a large spin-orbit splitting energy

(0.38 eV), yielding a complicated valence band structure: a highly anisotropic heavy-

hole band, a highly nonparabolic light-hole band, and a spin-split band. The inclusion

of spin-orbit coupling improves the description of the valence bands. The inclusion

of d orbitals improves the dispersion relations and symmetry characters of the Bloch
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functions of the lowest conduction band near X and L points [40]. The inclusion of d

orbitals also upgrades the s∗ orbital, originally introduced to imitate d orbitals in the

sp3s∗ model, to a excited s orbital that is more physical. Hence, the better description

of the bulk bands with spin-orbit coupling and d orbitals included should improve

the electron levels of InAs dots. Tight-binding parameters used for the sp3s∗ model

including spin-orbit coupling and the sp3d5s∗ model including spin-orbit coupling are

listed in Table 2.1.

Figures 2.1 and 2.2 present the effects of the inclusion of spin-orbit coupling and

d orbitals on the bulk InAs band structure by comparing the bands calculated with

the three tight-binding models used for InAs dots: the sp3s∗ models (i) excluding

and (ii) including spin-orbit coupling, and (iii) the sp3d5s∗ model including spin-orbit

coupling. Figure 2.1 compares the band structures between the sp3s∗ models including

and excluding spin-orbit coupling. When the spin-orbit coupling is excluded, the

highest valence bands are six-fold at the Γ point. The bands are composed of four-

fold heavy-hole bands and two-fold light-hole bands. In contrast, the inclusion of

the spin-orbit coupling splits the highest valence bands to three types of bands: (i)

two-fold heavy-hole, (ii) two-fold light-hole, and (iii) two-fold spin-split bands, as

shown in Fig. 2.1. Figure 2.2 compares the band structures between the sp3s∗ and

the sp3d5s∗ models. Both models include spin-orbit coupling. Near the Γ point, the

band curvatures and energies of the two models are almost identical. However, as

k points move away from Γ, the sp3d5s∗ bands deviate from the sp3s∗ bands. The

deviation yields larger conduction and smaller valence band curvatures in the sp3d5s∗

model.
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Parameter SiA SiB SiC CdSe InAsA InAsB InAsC

Ea
s -4.200 -3.060 -4.777 -9.630 -7.983 -9.656 -5.980

Ec
s -4.200 -3.060 -4.777 0.030 -1.808 -2.113 0.333

Ea
p 1.715 1.675 1.674 1.470 0.532 -0.016 3.581

Ec
p 1.715 1.675 1.674 4.730 3.827 4.569 6.494

Ea
d , Ec

d 0.000 0.000 0.000 0.000 0.000 0.000 12.195
Ea
s∗ 6.685 4.756 8.697 7.530 12.583 9.138 17.841

Ec
s∗ 6.685 4.756 8.697 5.720 7.921 4.772 17.841

Vssσ -2.075 -2.029 -2.116 -1.160 -1.067 1.252 -1.479
Vs∗s∗σ 0.000 0.000 0.000 0.000 0.000 0.000 -3.851
Vsas∗cσ 0.000 0.000 0.000 0.000 0.000 0.000 -2.132
Vs∗ascσ 0.000 0.000 0.000 0.000 0.000 0.000 -1.222
Vsapcσ 2.481 3.566 2.479 1.979 1.909 1.156 2.316
Vscpaσ 2.481 3.566 2.479 2.399 2.306 2.829 2.801
Vs∗apcσ 2.327 2.595 2.656 1.321 2.531 1.889 2.647
Vs∗cpaσ 2.327 2.595 2.656 1.078 1.989 1.662 1.901
Vsadcσ 0.000 0.000 0.000 0.000 0.000 0.000 -2.583
Vscdaσ 0.000 0.000 0.000 0.000 0.000 0.000 -2.450
Vs∗adcσ 0.000 0.000 0.000 0.000 0.000 0.000 -0.850
Vs∗cdaσ 0.000 0.000 0.000 0.000 0.000 0.000 -0.837
Vppσ 2.716 11.338 2.878 3.340 3.035 2.570 4.119
Vppπ -0.715 -5.041 -0.811 -0.680 -0.982 -0.977 -1.369
Vpadcσ 0.000 0.000 0.000 0.000 0.000 0.000 -2.122
Vpcdaσ 0.000 0.000 0.000 0.000 0.000 0.000 -2.058
Vpadcπ 0.000 0.000 0.000 0.000 0.000 0.000 1.546
Vpcdaπ 0.000 0.000 0.000 0.000 0.000 0.000 1.711
Vddσ 0.000 0.000 0.000 0.000 0.000 0.000 -1.201
Vddπ 0.000 0.000 0.000 0.000 0.000 0.000 2.182
Vddδ 0.000 0.000 0.000 0.000 0.000 0.000 -1.779
∆a 0.000 0.000 0.000 0.000 0.000 0.376 0.529
∆c 0.000 0.000 0.000 0.000 0.000 0.510 0.374

Table 2.1: Tight-binding parameters for Si, CdSe, and InAs in units of eV. Eγ denotes
the on-site parameter of orbital γ, and Vγ,γ′β denotes the nearest-neighbor off-site
parameter between two orbitals γ and γ ′ with bonding orientation β [41]. ∆i refers
to the spin-orbit splitting energy of atom i. The indexes a and c refer to anion and
cation, respectively. SiA is a parameter set taken from Ref. [36]. SiB and SiC are
parameter sets optimized for conduction and valence levels, respectively[38]. CdSeA

is a parameter set taken from Ref. [42]. InAsA and InAsB are parameter sets for the
sp3s∗ model excluding and including spin-orbit coupling, while InAsC is that for the
sp3d5s∗ model including spin-orbit coupling.
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Egap mcl mct mlh mhh

Vogl et al. 1.17 0.73 1.61 0.18 0.39
Klimeck et al. 1.17 0.91 0.30 0.15 0.55
Experiment 1.17 0.92 0.19 0.15 0.54

Table 2.2: Indirect band gap Egap and effective masses of Si bands with the tight-
binding parameters of Vogl et al. [36] and those of Klimeck et al [38]. The units of
the gap and effective masses are eV and the free electron mass, respectively. mcl and
mct denote the longitudinal and transverse effective masses of the lowest conduction
band near the X point. mlh and mhh are the effective masses at Γ of the light- and
heavy-hole bands, respectively. The hole masses are averages of the three directions
given in Ref. [38]. The experimental data are taken from Ref. [37].

Egap mc mv

CdSeA 1.90 0.13 0.41
Data Base 1.90 0.11 0.44

Egap mc mhh[001] mhh[011] mhh[111] mlh

InAsA 0.37 0.025 0.27 0.27 0.57 0.022
InAsB 0.42 0.025 0.35 0.64 0.86 0.028
InAsC 0.42 0.024 0.32 0.65 0.95 0.029
Data Base 0.37/0.42 0.024 0.34 0.64 0.88 0.026

Table 2.3: Direct band gap Egap and effective masses of CdSe and InAs bands given by
the tight-binding parameters listed in Table 2.1. The units of the gaps and effective
masses are eV and the free electron mass, respectively. The corresponding quantities
either measured by experiments or predicted by other theoretical models are taken
from Ref. [37] for comparison. Note that the parameter set InAsA is fitted to the
band gap (0.37 eV) at the room temperature, while the sets InAsB and InAsC are
to the gap (0.42 eV) at 4.2 K. mc and mv denote the averaged effective masses of
the lowest conduction band and the highest valence band (including both heavy- and
light-hole bands) near Γ, respectively. mhh[lmn] is an heavy-hole effective mass in k
direction [lmn] near Γ, while mlh is an averaged light-hole effective mass.
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Figure 2.1: InAs bulk band structures calculated with the sp3s∗ tight-binding (TB)
model including and excluding spin-orbit coupling. The solid lines depict the bulk
band structure of the sp3s∗ model including spin-orbit coupling, while the dotted lines
correspond to that of the sp3s∗ model excluding spin-orbit coupling. The parameters
used for the two models are listed in Table 2.1. The inclusion of the spin-orbit coupling
splits the highest valence bands to the heavy-hole, light-hole, and spin-split bands.
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Figure 2.2: InAs bulk band structures calculated with the sp3s∗ and sp3d5s∗ tight-
binding (TB) model. Both models include spin-orbit coupling. The solid lines depict
the bulk band structure of the sp3d5s∗ model with parameters taken from Ref. [40],
while the dashed lines correspond to that of the sp3s∗ model with parameters opti-
mized by a genetic algorithm [38]. Near the Γ point, the band curvatures and energies
of the two models are almost identical. However, the deviation of the sp3d5s∗ bands
from the sp3s∗ bands becomes bigger, away from the Γ point. The deviation yields
larger conduction and smaller valence band curvatures in the sp3d5s∗ model.
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2.2 Single-Particle Energies and Wave Functions

In contrast to the particle-in-box expectation that the level spacing is inversely

proportional to the square of the box size R, single-particle energy gaps of Si, CdSe,

and InAs dots scale as R−1.83, R−1.23, and R−1.15 in the fitting with the function

aR−n + Ebulk
gap , respectively. Ebulk

gap denotes the bulk band gap of each material. Fig-

ure 2.3 shows the size dependences of the single-particle energy gaps. Pseudo-potential

calculations show that the gaps scale asR−1.20, R−1.64, andR−1.01 for Si [43], CdSe [44],

and InAs [18] dots, respectively. Although the scaling behaviors of the gaps given by

the tight-binding and the pseudo-potential models are different, both models suggest

that the scaling exponent n is smaller than 2. As the size increases, the single-particle

gaps ultimately approach the bulk band gaps, which are 1.2 eV, 1.8 eV, and 0.4 eV

for Si, CdSe, and InAs, respectively.

Within the sp3s∗ model, the valence wave functions are mainly p-like in terms of

dominant basis orbital types, while the conduction wave functions are s-like for direct-

gap semiconductors and a mixture of s- and p-like for indirect-gap semiconductors.

Tables 2.4 and 2.5 list the orbital-type distributions of the electron wave functions of

Si, CdSe, and InAs dots. For all three dot materials, p orbitals constitute > 95% of

the valence wave functions which are similar to a bonding p-like bulk valence band.

For indirect-gap Si dots, p and s∗ orbitals constitute about 80% of the conduction

wave function reminiscent of the sp hybrid bulk conduction band near the X point. In

contrast, the conduction wave functions of InAs and CdSe dots are mainly composed

of s orbitals. This is consistent with the anti-bonding s-like bulk conduction band of

InAs and CdSe.
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As the single-particle Hamiltonian for InAs dots changes from the sp3s∗ to sp3d5s∗

model, the large fractions of s and p orbitals in electron wave functions shift to s∗

and d, yielding a better description of the wave function symmetries [40]. Table 2.5

compares the composition of several electron wave functions in terms of orbital types

between the sp3s∗ and sp3d5s∗ models. In several low-lying conduction wave functions,

the large fraction of the s orbital shifts to s∗ and d, while in valence wave functions,

the large fraction of p shifts to d. The orbital fraction shifts are attributed to the

introduction of the couplings between s and s∗, between s and d, and between p

and d. In contrast to these large shifts, only small changes are observed in the p

orbital fraction of the conduction wave functions, and s- and s∗-orbital fractions of the

valence wave functions. The compositions of the electron wave functions are similar

to those of bulk Bloch wave functions near the band edges [40]. The Bloch function

compositions obtained by the sp3d5s∗ tight-binding model show good agreement with

self-consistent pseudo-potential calculations [40, 45].
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Figure 2.3: Single-particle energy gaps of Si, CdSe, and InAs quantum dots versus
the dot radius. The Si, CdSe, and InAs gaps are calculated with tight-binding pa-
rameter sets of SiB, CdSeA, and InAsC listed in Table 2.1, respectively. The solid
lines are (aR−n +Ebulk

gap ) fits with n=1.83, 1.23, and 1.15 for Si, CdSe, and InAs gaps,
respectively. Ebulk

gap is the bulk band gap. The correlation coefficients of the fits are
> 0.99. The arrows indicate the bulk band gaps of Si, CdSe, and InAs.

27



Si CdSe
Level s p s∗ Level s p s∗

c1 0.177 0.452 0.371 c1 0.850 0.139 0.011
c2 0.185 0.444 0.371 c2 0.739 0.233 0.029
v1 0.027 0.962 0.011 v1 0.047 0.950 0.003
v2 0.002 0.996 0.002 v2 0.007 0.993 0.001

Table 2.4: Compositions of electron wave functions in terms of orbital types for Si and
CdSe quantum dots with radius 14 Å. The calculated fraction of the wave function in
orbital type γ is the sum of the tight-binding coefficient squares |ciγσ|2 over all atomic
sites i and spins σ. The levels cn and vn are the nth lowest conduction and the nth
highest valence levels, respectively.

InAs sp3s∗ model sp3d5s∗ model
Level s p s∗ s p d s∗

c1 0.802 0.172 0.026 0.563 0.177 0.023 0.238
c2 0.445 0.380 0.175 0.438 0.309 0.040 0.212
c6 0.624 0.313 0.063 0.342 0.464 0.105 0.089
v1 0.004 0.994 0.002 0.005 0.821 0.173 0.001
v2 0.041 0.953 0.006 0.034 0.785 0.174 0.007

Table 2.5: Compositions of electron wave functions in terms of orbital types for an
InAs quantum dot with radius 14 Å. The calculated fraction of the wave function in
orbital type γ is the sum of the tight-binding coefficient squares |ciγσ|2 over all atomic
sites i and spins σ. The levels cn and vn are the nth lowest conduction and the nth
highest valence electron levels, respectively. The compositions of the electron wave
functions between the sp3d5s∗ and the sp3s∗ tight-binding models are compared.
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CHAPTER 3

OPTICALLY EXCITED QUANTUM DOTS

In science one tries to tell people, in such a way as to be understood by everyone,

something that no one ever knew before. But in poetry, it’s the exact opposite.

-Paul Dirac

In this chapter, we investigate the exciton levels of optically excited quantum dots

by incorporating electron-hole interactions and electron-hole dipole transitions into

the tight-binding model, and address four important questions regarding the modeling

of the exciton levels.

First, how sensitive are calculated exciton energies to specific choices of atomic

basis orbitals? Since tight-binding matrix elements for a single-particle Hamiltonian

are empirically optimized without introducing any specific atomic orbitals, there is

no direct way to calculate other matrix elements such as Coulomb, exchange, and

dipole-moment matrix elements. Therefore, calculations involving the electron-hole

interactions and dipole moments require a selection of specific atomic orbitals that

cannot be explicitly related to the tight-binding parameters. Hence, we need to

test to what degree specific choices of orbitals affects exciton energies. We choose

two reasonable sets of atomic orbitals to represent the tight-binding basis orbitals:
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(i) Slater-type orbitals and (ii) Gaussian-type orbitals. We compare electron-hole

interaction matrix elements modeled with the two types of orbitals. We also develop

a scaling scheme to quantify the effects of the choices of atomic orbitals on electron-

hole Coulomb energies.

Second, what is the range of the electron-hole exchange interaction in quantum

dots? A recent pseudo-potential study showed that electron-hole exchange interac-

tions can extend over a whole dot due to the lack of local orthogonality between

electron and hole wave functions [46]. We investigate in detail the effective range of

the exchange interaction by applying a cutoff range to the Coulomb potential, follow-

ing the approach of Franceschetti and co-workers [46]. The origin of the characteristic

range of the exchange interaction is revealed by the analysis of the exchange charge

density of the electron-hole pair.

Third, how large is the correlation effect of the electron-hole configuration inter-

actions on low-lying exciton energies? The coupling between electron-hole configu-

rations yields exciton states composed of many different electron-hole configurations.

To examine the correlation effect of the couplings on exciton energies, we apply both

configuration interaction scheme and perturbation theory. By comparing exciton en-

ergies calculated with the two schemes, we can obtain correlation energies contributing

to the exciton energies.

Finally, how well does the tight-binding model describe the size-dependence of

exciton energies? Tight-binding parameters used for a single-particle Hamiltonian of

quantum dots are fitted to bulk band structures. Therefore, there is no direct con-

nection between the parameters and quantum-dot properties. The only adjustment
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applied to the single-particle Hamiltonian of quantum dots is the energy shift of dan-

gling bonds at the dot surface. Hence, it is important to examine how transferable

bulk tight-binding parameters are to describe the single-particle Hamiltonian of a

quantum dot. The good description of electron-hole interactions and dipole moments

is also required to accurately predict exciton energies. We compare several low-lying

bright exciton energies with PLE experimental data to verify the tight-binding model

for exciton energies of quantum dots.

3.1 Electron-Hole Hamiltonian

To describe an effective electron-hole Hamiltonian of a quantum dot, we choose

a product of an electron and hole wave functions as a basis set |eh〉 of the effective

Hamiltonian. The electron and hole wave functions are related to the single-particle

wave functions calculated from the single-particle Hamiltonian described in Chap. 2

(see Appendix A).

The projection of the electron-hole basis set |eh〉 into a spatial r and spin σ space

according to Eqs. A.4 and A.5 is

〈re, σe; rh, σh|eh〉 ≡ ψe(re, σe)ψh(rh, σh) (3.1)

=
∑

iγσe

ce;iγσeφiγ(re)χσe
∑

i′γ′σh

ch;i′γ′σhφ
∗
i′γ′(rh)χ

∗
−σh , (3.2)

where ψe(re, σe) and ψh(rh, σh) are an electron and hole wave functions, respectively.

Within the electron and hole wave functions, the coefficients ce and ch describe global

variations of the wave functions from one atomic site to another atomic site, while the

tight-binding basis orbital φiγ(r) describes a local variation of the wave function near

atomic site i with orbital-type γ. The global variation described by the coefficients is

called an envelope function. The function χσ represents a spin state. In a special case
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where a single-particle Hamiltonian excludes spin-orbit coupling, the spatial part of

the electron-hole pair wave functions can be separated from its spin part:

ψe(re, σe)ψh(rh, σh) = ψe(re)ψh(rh)χσeχσh. (3.3)

An effective electron-hole Hamiltonian consists of a non-interaction part and an

interaction part.

He−h = Hnon−int +Hint (3.4)

The non-interaction part of the electron-hole Hamiltonian can be written in terms of

the electron-hole basis set and its eigenvalues as follows.

Hnon−int =
∑

eh

(Ee + Eh)|eh〉〈eh|, (3.5)

where Ee and Eh are the electron and hole energies, which are defined in Eqs. A.1

and A.2, respectively.

Projecting an electron-hole Coulomb J and exchange K interactions onto the basis

set |eh〉 yields the interaction part of the electron-hole Hamiltonian:

Hint = J +K, (3.6)

J = −e2
∑

e′h′eh

|e′h′〉〈eh|
∑

σ,σ′

∫ ∫
d3r′d3r

ψ∗e′(r
′, σ)ψe(r

′, σ)ψ∗h′(r, σ
′)ψh(r, σ′)

ε(|r′ − r|, R) |r′ − r| ,

(3.7)

K = e2
∑

e′h′eh

|e′h′〉〈eh|
∑

σ,σ′

∫ ∫
d3r′d3r

ψ∗e′(r
′, σ)ψ∗h′(r

′,−σ)ψe(r, σ
′)ψh(r,−σ′)

ε(|r′ − r|, R) |r′ − r| ,

(3.8)

where e is the elementary charge. The Coulomb interaction J describes the scattering

of the electron from e to e′ and the hole from h to h′, whereas the exchange interaction

K describes the recombination of a pair e, h at r and the recreation of a pair e′, h′
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at r′. Both the Coulomb and exchange interactions are screened with a dielectric

function, which is a function of quantum dot radius R and separation |r−r′| between

two particles. The model for the dielectric function is described in Chap. 3.2

Different spin selection rules are applied to the Coulomb and exchange interac-

tions. In the Coulomb interaction, electron and hole spins are conserved. In contrast,

the spins of an electron and a hole, which interact via the exchange interaction, should

be opposite. Specifically, the spin selection rules are

σe = σe′ and σh = σh′ , for 〈e′h′|J |eh〉, (3.9)

σe = −σh and σe′ = −σh′ , for 〈e′h′|K|eh〉. (3.10)

The matrix elements of the electron-hole interaction Hamiltonian can be rewritten

in terms of integrals over the tight-binding basis orbitals by replacing the electron

and hole wave functions with Eqs. A.4 and A.5:

〈e′h′|J |eh〉 = −e2
∑

n1,n2,n3,n4,σ,σ′
c∗e′;n1,σ

ce;n2,σc
∗
h′;n3,σ′ch;n4,σ′

×
∫ ∫

d3r′d3r
φ∗n1

(r′)φn2(r′)φ∗n3
(r)φn4(r)

ε(|r′ − r|, R) |r′ − r| , (3.11)

〈e′h′|K|eh〉 = e2
∑

n1,n2,n3,n4,σ,σ′
c∗e′;n1,σ

c∗h′;n2,−σce;n3,σ′ch;n4,−σ′

×
∫ ∫

d3r′d3r
φ∗n1

(r′)φn2(r′)φ∗n3
(r)φn4(r)

ε(|r′ − r|, R) |r′ − r| . (3.12)

Among the four involving basis orbitals in the integrals, two orbitals come from the

electron wave functions and the other two come from the hole wave functions. We

define the common integral appearing in both Coulomb and exchange integrals as

ω(n1, n2;n3, n4):

ω(n1, n2;n3, n4) ≡
∫ ∫

d3r′d3r
φ∗n1

(r′)φn2(r′)φ∗n3
(r)φn4(r)

ε(|r′ − r|, R) |r′ − r| . (3.13)
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We approximate the Coulomb and exchange interaction matrix elements by consid-

ering only integrals involving at most two distinct basis orbitals. This approximation

is reasonable since the integrals involving more than two different orbitals are typi-

cally small compared to the kept integrals [20, 47]. After applying this approximation,

we have two types of integrals,

ωcoul(n, n
′) ≡ ω(n, n;n′, n′) (3.14)

ωexch(n, n′) ≡ ω(n, n′;n, n′) = ω(n, n′;n′n) (3.15)

We define the first type of integrals as a Coulomb integral, where a basis orbital

scatter to the same basis orbital through the Coulomb interaction. In the second

type of integrals defined as an exchange integral, a basis orbital scatter to a different

basis orbital. In terms of a charge density, the Coulomb integrals form a charge

density at r and r′ with the same basis orbitals, whereas two different basis orbitals

form charge densities in the exchange integrals. The last equality in Eq. (3.15) is true

when the basis orbitals are real as they are in this work.

To make our notations clear, note that the Coulomb and exchange integrals (wcoul

and wexch) are the interactions between the tight-binding basis orbitals, while the

Coulomb and exchange interactions (J and K) are interactions between the electron

and hole wave functions. In fact, the Coulomb interaction has contributions from

both Coulomb and exchange integrals as does the exchange interaction.

Finally, we write the Coulomb and exchange interaction matrix elements in terms

of the Coulomb and exchange integrals:

〈e′h′|J |eh〉 = −e2
∑

n,n′,σ,σ′
c∗e′;n,σce;n,σc

∗
h′;n′,σ′ch;n′,σ′ωcoul(n, n

′)

−e2
∑

n,n′,σ,σ′
c∗e′;n,σce;n′,σc

∗
h′;n,σ′ch;n′,σ′ωexch(n, n′)
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−e2
∑

n,n′,σ,σ′
c∗e′;n,σce;n′,σc

∗
h′;n′,σ′ch;n,σ′ωexch(n, n′), (3.16)

〈e′h′|K|eh〉 = e2
∑

n,n′,σ,σ′
c∗e′;n,σc

∗
h′;n,σce;n′,σ′ch;n′,σ′ωcoul(n, n

′)

+e2
∑

n,n′,σ,σ′
c∗e′;n,σc

∗
h′;n′,σce;n,σ′ch;n′,σ′ωexch(n, n′)

+e2
∑

n,n′,σ,σ′
c∗e′;n,σc

∗
h′;n′,σce;n′,σ′ch;n,σ′ωexch(n, n′). (3.17)

3.2 Dielectric Function

We use a distance- and size-dependent dielectric function to screen the Coulomb

and exchange interactions of electron-hole pairs. The distance dependence of the

dielectric function is approximated by the Thomas-Fermi model generalized for semi-

conductors [48], while the size dependence is given by the Penn model generalized for

quantum dots [49, 50]. These models are semi-classical approximations of the dielec-

tric function from the bulk limit. The distance dependence describes the screening

of short-range interactions, whereas the size dependence determines the screening of

long-range interactions.

The distance dependence of the dielectric function is obtained by imposing a

cutoff distance r0 on the Thomas-Fermi screening and by fixing a long-distance limit

of the dielectric function with a static dielectric constant ε0 within the Thomas-Fermi

model [48]:

ε(r) =

{
ε0 qr0/[sinh q(r0 − r) + qr], : r ≤ r0

ε0, : r ≥ r0.
(3.18)

The cutoff distance r0 is determined by

sinh qr0/qr0 = ε0, (3.19)

where the Thomas-Fermi wave vector q is 2 3
√

3n0
6
√
π, and n0 is the density of electrons

in uniform potentials.
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The size dependence of the dielectric function is modeled by the Penn model

generalized for quantum dots [49, 50] where continuous energy levels of the bulk

are replaced with discrete energy levels of quantum dots. Within the model, the

size-dependent dielectric function for quantum dots at a low-frequency limit and a

long-distance limit is given by [50]:

εdot
0 (R) = 1 + (εbulk

0 − 1)
(Ebulk

gap + ∆)2

[Edot
gap(R) + ∆]2

, (3.20)

where εbulk
0 is a low-frequency limit of bulk dielectric constants. The shift ∆ denotes

E2 −Ebulk
gap , where E2 is the energy of the first pronounced peak in a bulk absorption

spectrum. The energies Ebulk
gap and Edot

gap(R) are the single-particle gaps for bulk and a

dot with radius R, respectively.

By replacing the long-distance limit of the dielectric function in Eq. (3.18) with the

size-dependent dielectric function given by Eq. (3.20), we combine these two models

and obtain a distance- and size-dependent dielectric function for quantum dots:

ε(r, R) =

{
εdot

0 (R) qr0/[sinh q(r0 − r) + qr], : r ≤ r0

εdot
0 (R), : r ≥ r0.

(3.21)

The cutoff distance r0 for the Thomas-Fermi screening is typically ∼ 2 Å. The dielec-

tric function εdot
0 (r) for Si quantum dots with dot radius 10 Å is shown in Fig. (3.1).

3.3 Coulomb Interactions

To calculate the Coulomb interactions, we need a real-space description of the

tight-binding basis orbitals. However, the empirical tight-binding model has an in-

herent difficulty determining the tight-binding basis orbitals in real space. The real-

space description of the basis orbitals is not provided since the tight-binding matrix

elements are determined by fitting to the bulk band structure without introducing
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Figure 3.1: Dielectric function as a function of the distance r between two particles
for Si quantum dots with radius 10 Å. The dielectric function is given by Eq. 3.21.
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explicit basis orbitals. Since there is no easy way to extract basis orbitals from the

empirically chosen tight-binding parameters, the choice of basis orbitals is largely arbi-

trary. Therefore, we test to what degree the choice of orbitals affects the electron-hole

Coulomb interactions.

3.3.1 Coulomb and Exchange Integrals

To calculate the Coulomb and exchange interactions, we first evaluate their basic

components, the Coulomb and exchange integrals, by modeling the tight-binding or-

bitals with atomic Slater orbitals [51], following Martin et al [47]. The Slater orbitals

are single-exponential functions with the exponent given by the Slater rules [51] de-

signed to yield a good approximation of effective ion radii and the ionization energies.

In Slater orbitals, the radial part of the wave function is written as

R(r) = ra exp (−br), (3.22)

where the constant a and b are determined by the Slater rules [51]. The Slater rules

are specially designed for occupied orbitals such as s and p orbitals of valence electrons

in semiconductors. Therefore, the Slater rules should be modified for excited states d

and s∗ orbitals. As an extent of the Slater rules, we model a d orbital by promoting

one valence electron in the s or p orbitals to a d orbital in the same shell. Similarly,

an s orbital is obtained by exciting one valence electron to an s orbital in the next

shell. Figure (3.2) shows the radial parts of the s, p, d and s∗ Slater-type orbitals for

Si. The s and p Slater orbitals are well localized, whereas the excited d and s∗ are

loosely localized to overlap with orbitals centered on several neighbors.

The excited d5 and s∗ orbitals are treated as the same orbital in the Coulomb

and exchange integrals to reduce the computational time. This approximation is
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Figure 3.2: Radial parts of s, p, d and s∗ Slater-type orbitals for Si. The effective
radius of the s and p orbitals is 1 Å. In contrast to the well localized s and p orbitals,
the excited d and s∗ orbitals are widely spread across a couple of lattice constants.
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reasonable for the two following reasons. First, the radial distribution of the d5 and

s∗ orbitals is similar as shown in Fig. 3.2. Second, the difference of the angular

distribution between the d5 and s∗ orbitals can be suppressed by averaging out the

angular distributions of the d5 orbitals with the sum of those of the five d orbitals:

|φd5 |2 ≡
5∑

i=1

|φdi |2. (3.23)

On-site Coulomb and exchange integrals, in which both orbitals are centered on

the same atom, are calculated using a Monte Carlo method with importance sampling

for the radial integrations. The uncertainty of the Monte Carlo results is within 1%.

The angular part is integrated exactly by expansion in spherical harmonics. However,

the section 3.3.2 shows that the integral values must be considered to be uncertain

to about 20-30% due to the arbitrariness of the orbital choice and the effects of

orthogonalization.

Off-site exchange integrals, where the two orbitals are centered on two different

atom sites, are negligible even for nearest-neighbor integrals. These integrals decrease

quickly as the distance between atom sites increases, due to the localization and or-

thogonality of the orbitals. In particular, we show in the section 3.3.2 that even

nearest-neighbor exchange integrals are negligible due to the effect of orthogonaliza-

tion between off-site hybrids. Therefore, in this work we neglect off-site exchange

integrals beyond the nearest-neighbor integrals for the calculations of the Coulomb

and exchange matrix elements.

Regarding off-site Coulomb integrals, we first estimate these integrals with the

Ohno formula [52] modified to include screening,

ωCoul(n, n
′) ≡ ωCoul(iγ, i

′γ′)
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=
1

ε(|Ri −Ri′|, R)

1√
ω0

Coul(iγ, iγ
′)−2 + |Ri −Ri′|2

. (3.24)

The tight-binding orbital index n is replaced with atom-site index i and orbital-type

index γ for clarity. The vectors Ri and Ri′ are atom site vectors. The symbol

ω0
Coul(iγ, iγ

′) is an unscreened on-site Coulomb integral, where the superscript 0 des-

ignates an unscreened quantity. For the case of binary compounds, ω0
Coul(iγ, iγ

′) is

replaced by the average over the two different atoms. The integrals are effectively

screened by the dielectric constant ε(|Ri −Ri′|, R). This approximation is based on

the assumption that the effective separation between two particles in an integral can

be represented by the distance between atomic sites in which two orbitals of the inte-

gral are centered. Adding the screening effect is the only modification to the original

Ohno formula.

The modified Ohno formula is reasonable for the integrals whose two orbitals

are centered on distant atom sites, because the details of the charge distributions of

the distant orbitals are not important. In the large-distance limit, the two orbitals

become effectively point charges. However, as the two orbitals of the integrals are

from closer atom sites, the details of spatial distributions of the two orbitals and

dielectric function become more important. To test the validity of the modified Ohno

formula in the case that two orbitals are on close atom sites, we calculated the off-site

Coulomb integrals with a Monte Carlo method within 1% uncertainty and compared

these values with those from the modified Ohno formula.

The modified Ohno formula severely underestimates the off-site integrals as the

distance between two atom sites becomes as small as the nearest-neighbor distance.

For example, the Coulomb integral between the orbitals from nearest neighbors in

a Si quantum dot with radius 19Å given by the Ohno formula is 0.58 eV, while the
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Monte Carlo calculation gives 2.35 eV. For next-nearest neighbors, the Ohno formula

and the Monte Carlo calculation give 0.38 and 0.58 eV, respectively, and for the third-

nearest neighbors 0.33 and 0.36 eV. The difference between the results from the Ohno

formula and the Monte Carlo calculation becomes smaller as the distance between

the two atom sites becomes larger.

A big discrepancy between the Ohno formula and the Monte Carlo calculations

for the nearest-neighbor integrals results from the fact that the spatial overlap of

the nearest-neighbor orbitals is as big as that of the orbitals on the same atom site.

In addition, the spatial dependence of the dielectric function is not fully taken into

account in the modified Ohno formula. This approximation becomes critical when the

range of variations in the dielectric function is comparable to the effective distance

between orbitals. In that case, the effective dielectric function cannot be represented

by ε(|Ri − Ri′|, R). In light of the limit of the modified Ohno formula, we use the

Monte Carlo values for the on-site and the nearest-neighbor integrals and the Ohno

formula for the rest of off-site integrals. For clarity, we summarize the methods we

used for computation of the Coulomb and exchange integrals in Table 3.1.

As new basis orbitals for the Coulomb and exchange integrals, we prepare four

hybridized sp3 orbitals along the bonding directions in a zinc-blende structure as the

basis orbitals of the integrals. The four hybridized sp3 orbitals for anion atoms are

|sp3
a〉 ≡

1

2
(|s〉+ |px〉+ |py〉+ |pz〉),

|sp3
b〉 ≡

1

2
(|s〉+ |px〉 − |py〉 − |pz〉),

|sp3
c〉 ≡

1

2
(|s〉 − |px〉+ |py〉 − |pz〉),

|sp3
d〉 ≡

1

2
(|s〉 − |px〉 − |py〉+ |pz〉). (3.25)
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on-site NN beyond NN
Coulomb Monte Carlo Monte Carlo Ohno formula
exchange Monte Carlo neglected neglected

Table 3.1: Methods for the computations of the Coulomb and exchange integrals with
respect to a site-to-site distance. NN stands for nearest-neighbors.

For cation atoms, the four hybridized orbitals are

|sp3
a〉 ≡

1

2
(|s〉 − |px〉 − |py〉 − |pz〉),

|sp3
b〉 ≡

1

2
(|s〉 − |px〉+ |py〉+ |pz〉),

|sp3
c〉 ≡

1

2
(|s〉+ |px〉 − |py〉+ |pz〉),

|sp3
d〉 ≡

1

2
(|s〉+ |px〉+ |py〉 − |pz〉). (3.26)

Calculated Coulomb and exchange integrals based on the hybridized sp3 orbitals

and s∗ orbital are listed in Tables 3.2, 3.3, and 3.4. The calculated unscreened inte-

grals are used in the modified Ohno formula to calculate off-site screened Coulomb

integrals. The comparison between the unscreened and screened on-site Coulomb in-

tegrals shows that the screening effect is significant even for on-site integrals. This is

because the cutoff radius of Thomas-Fermi screening r0 is ∼ 2 Å and it is comparable

to the spatial extension of the basis orbitals. With a simple analysis, we find that the

effective screening of on-site Coulomb integrals is generally about half the long-range

screening given by εdot
0 (R). Based on this observation, we use half of the long-range

dielectric constant to screen the on-site exchange integrals.
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Element Integral type (sp3
a, sp

3
a) (sp3

a, sp
3
b) (sp3

a, s
∗) (s∗, s∗)

Si Coulomb 11.88 8.49 2.87 2.27
Si exchange 11.88 0.78 0.024 2.27
In Coulomb 7.82 5.67 2.30 1.36
In exchange 7.82 0.47 0.024 1.36
As Coulomb 12.13 9.26 2.34 1.73
As exchange 12.13 0.47 0.028 1.73
Cd Coulomb 6.59 5.06 1.77 1.44
Cd exchange 6.59 0.74 0.017 1.44
Se Coulomb 12.85 9.70 2.97 2.38
Se exchange 12.85 0.95 0.030 2.38

Table 3.2: On-site unscreened Coulomb and exchange integrals defined in
Eqs. (3.14) and (3.15) for the sp3s∗ basis set, in units of eV. Integrals for the sp3 or-
bitals are calculated based on the hybridized orbitals defined in Eqs. (3.25) and (3.26).

Element (sp3
a, sp

3
a) (sp3

a, sp
3
b) (sp3

a, s
∗) (s∗, s∗)

Si 3.16 (1.26) 1.67 (0.91) 0.32 (0.31) 0.26 (0.24)
In 1.26 (0.80) 0.77 (0.58) 0.24 (0.24) 0.17 (0.14)
As 2.33 (1.24) 1.33 (0.95) 0.28 (0.24) 0.23 (0.18)
Cd 1.86 (1.29) 1.20 (0.99) 0.35 (0.35) 0.28 (0.28)
Se 4.74 (2.51) 2.76 (1.89) 0.58 (0.58) 0.48 (0.46)

Table 3.3: On-site screened Coulomb integrals of the sp3 hybridized orbitals and s∗

orbital for the Si dot with radius R=19 Å, InAs with R=21 Å, and CdSe with R=21 Å,
in unites of eV. The integrals are screened by the dielectric function in Eq. (3.21),
which is a function of electron-hole separation and of quantum-dot radius. For com-
parison, the values in parentheses are the integrals obtained from full screening with
the dielectric constant in the long-distance limit εdot

0 (R).
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Si Si bonding Si non-bonding
Si bonding 2.35 (0.58) 0.95 (0.53)
Si non-bonding 0.95 (0.53) 0.55 (0.53)
InAs In bonding In non-bonding
As bonding 1.43 (0.54) 0.61 (0.54)
As non-bonding 0.81 (0.53) 0.42 (0.53)
CdSe Cd bonding Cd non-bonding
Se bonding 2.41 (1.03) 1.03 (1.02)
Se non-bonding 1.62 (1.02) 0.79 (1.00)

Table 3.4: Nearest-neighbor screened Coulomb integrals of the hybridized sp3 orbitals
for the Si dot with radius R=19 Å, InAs with R=21 Å, and CdSe with R=21 Å, in
units of eV. The integrals are screened by the dielectric function in Eq. (3.21). The
values given by the modified Ohno formula Eq. (3.24) are listed within parentheses.

3.3.2 Choice of Basis Orbitals

In principle, Coulomb and exchange integrals calculated with a particular set of

basis orbitals change as we choose different basis orbitals. Therefore, the sensitivity

of Coulomb and exchange integrals to the choice of basis orbitals need to be checked.

An alternative set of basis orbitals is that given by the standard quantum chemistry

Gaussian-based commercial packages [53]. Two important questions can be answered

by a comparison between integrals obtained from Gaussian-type orbitals and Slater

orbitals: what is the typical variation in the integral values for two reasonable choices

of orbitals; and what is the effect of using nonorthogonal bond hybrids rather than

properly orthogonalized hybrids? The underlying assumption in the tight-binding

approach is that the orbitals on different sites are orthogonal.

Table 3.5 shows a comparison between orthogonal Gaussian-type orbitals, nonorthog-

onal Gaussian-type orbitals, and nonorthogonal Slater orbitals for on-site unscreened
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Coulomb and exchange integrals [54]. Typically, the Coulomb integrals of the nonorthog-

onal Gaussian-type and the nonorthogonal Slater orbitals differ by 10%, whereas the

exchange integrals (an order of magnitude smaller than Coulomb integrals) differ by

20-50%. Orthogonalization generally gives an additional 10% change. The use of

nonorthogonal Slater orbitals can therefore be estimated to imply 20% overall uncer-

tainty in the on-site integrals.

A similar comparison for nearest-neighbor integrals is shown in Table 3.6. Here

the difference between the nonorthogonal Gaussian-type and the nonorthogonal Slater

orbitals is less than 10%, but orthogonalization can yield a lowering of up to 30% in the

Coulomb integrals between bonding orbitals. The most dramatic effect, however, is

that the exchange integrals essentially become negligible when orthogonalized hybrids

are used. Notably, nonorthogonal hybrids cannot be used for the bonding-bonding off-

site exchange integrals, since these integrals are quite large without orthogonalization

but are reduced by a factor of 20–30 after orthogonalization.

In conclusion, the dominant Coulomb integrals obtained from the Slater orbitals

can be considered accurate only to 20-30% due to the sensitivity to different functional

representations and to effect of orthogonalization. Further, proper orthogonalization

reveals that all off-site exchange integrals can be neglected, including those between

bonding hybrids.

3.3.3 Reliability of Coulomb Interaction Calculations

In the section 3.3.2, we find that the variation of on-site and nearest-neighbor

Coulomb and exchange integrals with reasonable choices of basis orbitals are within
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Integral type O-GTO NO-GTO NO-SO
ω0

Coul(a, a) of Si 11.95 11.65 11.91
ω0

Coul(a, b) of Si 9.44 8.85 9.00
ω0

exch(a, b) of Si 1.06 0.91 0.73
ω0

Coul(a, a) of In 7.90 8.52 7.82
ω0

Coul(a, b) of In 6.73 6.54 5.67
ω0

exch(a, b) of In 0.77 0.67 0.47
ω0

Coul(a, a) of As 12.99 12.57 12.13
ω0

Coul(a, b) of As 10.00 9.54 9.26
ω0

exch(a, b) of As 1.08 0.99 0.47
ω0

Coul(a, a) of Cd 7.09 7.81 6.59
ω0

Coul(a, b) of Cd 6.08 5.98 5.06
ω0

exch(a, b) of Cd 0.70 0.61 0.74
ω0

Coul(a, a) of Se 14.14 13.73 12.85
ω0

Coul(a, b) of Se 10.80 10.39 9.70
ω0

exch(a, b) of Se 1.15 1.08 0.90

Table 3.5: Onsite unscreened Coulomb and exchange integrals with: (O-GTO)
Löwdin orthogonalized Gaussian-type hybrids; (NO-GTO) nonorthogonal Gaussian-
type hybrids; and (NO-SO) nonorthogonal Slater orbitals. The GTO integrals were
calculated with the MOLPRO [53] package using the atomic pseudo-potentials from
the Los Alamos group [55]. The NO-SO integrals are from our Monte Carlo calcula-
tions. The hybrids a and b are the ones defined as sp3

a and sp3
b in Eqs. (3.25) and (3.26)
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Si O-GTO NO-GTO NO-SO
ω0

Coul(B,B) 8.04 10.01 10.60
ω0

Coul(B,N) 5.96 6.65 6.78
ω0

Coul(N,N) 4.64 4.67 4.89
ω0

exch(B,B) 0.27 6.20
ω0

exch(B,N) 0.11 0.43
ω0

exch(N,N) 0.04 0.32
InAs O-GTO NO-GTO NO-SO
ω0

Coul(B,B) 6.94 8.77 9.06
ω0

Coul(B,N) 5.50 6.39 6.59
ω0

Coul(N,B) 5.02 5.42 5.43
ω0

Coul(N,N) 4.12 4.18 4.24
ω0

exch(B,B) 0.28 4.90
ω0

exch(B,N) 0.16 0.59
ω0

exch(N,B) 0.04 0.18
ω0

exch(N,N) 0.04 0.29
CdSe O-GTO NO-GTO NO-SO
ω0

Coul(B,B) 6.94 8.77 9.06
ω0

Coul(B,B) 6.89 8.66 8.74
ω0

Coul(B,N) 5.66 6.62 6.84
ω0

Coul(N,B) 4.85 5.16 5.01
ω0

Coul(N,N) 4.06 4.11 4.13
ω0

exch(B,B) 0.27 4.35
ω0

exch(B,N) 0.19 0.69
ω0

exch(N,B) 0.03 0.13
ω0

exch(N,N) 0.04 0.24

Table 3.6: Nearest-neighbor unscreened Coulomb and exchange integrals with: (O-
GTO) Löwdin orthogonalized Gaussian-type hybrids; (NO-GTO) nonorthogonal
Gaussian-type hybrids; and (NO-SO) nonorthogonal Slater orbitals. The GTO in-
tegrals were calculated with the MOLPRO [53] package using the pseudo-potentials
from the Los Alamos group [55] for a two-atom molecule with a bond length given by
the bulk value. The SO integrals are from our Monte Carlo calculations. The indices
B and N designate the bonding and non-bonding sp3 hybrids, respectively.
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20-30%. The next question we ask is to what degree the electron-hole Coulomb

interactions are sensitive to the values of on-site and nearest-neighbor integrals.

We perform this test by scaling the on-site and nearest-neighbor Coulomb and

exchange integrals from the values listed in Tables 3.2, 3.3, and 3.4, and calculating

the electron-hole Coulomb interactions as a function of the scaling factor. This scaling

scheme is an indirect way of testing the sensitivity to the real-space description. Off-

site integrals are scaled by replacing the unscreened on-site integrals with the scaled

ones in the Ohno formula, Eq. (3.24). Note that the off-site Coulomb integrals are not

directly scaled by the same factor as the on-site integrals, but change only indirectly

through the scaled unscreened on-site integrals in the Ohno formula. Therefore, this

scaling scheme in effect changes the atomistic details of the basis orbitals.

Figure 3.3 shows the variation of the Coulomb interaction between the lowest hole

and electron states with respect to the scaling factor for the Coulomb and exchange

integrals. It shows as a dot size increases, the sensitivity of the Coulomb interaction

to the on-site integrals decreases. For example, if the on-site integrals are reduced by

50%, the reduction in the Coulomb energy varies from 20% in the smallest shown dot

to only 5% at 30 Å-radius. Since the contribution from the on-site integrals decreases

as the dot size increases, the specific model for the real-space functions for the basis

orbitals is less critical for larger dots.

The insensitivity of the Coulomb energies to the scaling factor in large quantum

dots is due to the long-range character of the Coulomb interaction. We can explain

the insensitivity by a closer look at the Ohno formula for the off-site integrals. In

the limit of a large distance between two atom sites, the off-site integral becomes
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Figure 3.3: Coulomb energy 〈eh|J(f)|eh〉 as a function of scaling factor f of the
on-site and nearest-neighbor integrals. The Coulomb energy with the lowest electron
and hole wave functions |eh〉 is shown for various radii of Si spherical quantum dots,
with the on-site integrals scaled by the factor f . That is ω → fω from the values in
Tables 3.2, 3.3, and 3.4. The off-site integrals are only indirectly scaled through the
on-site integrals in the Ohno formula, Eq. (3.24). The Coulomb energy is normalized
by its value at f = 1. As the dot size increases, the Coulomb energy becomes
significantly less sensitive to variations in the on-site and nearest-neighbor integrals.
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independent of the on-site integral values:

ω0
Coul(iγ, i

′γ′) ≈ 1

|Ri −Ri′|
− 1

2ω0
Coul(iγ, iγ

′)2 |Ri −Ri′|3
. (3.27)

The off-site integrals become a point-charge interaction, making the atomic-scale

details of the basis orbitals irrelevant in this limit. Since more off-site integrals con-

tribute to the Coulomb energy in larger quantum dots, the Coulomb energy becomes

insensitive to the atomic details.

The significance of Fig. 3.3 is that it quantifies this qualitative explanation for

decreasing sensitivity with increasing dot sizes. For example, with a targeted 10%

accuracy in the Coulomb interaction, only a 50% accuracy for the on-site integrals is

needed for dots of radius larger than 30 Å, while for dots of 10 Å radius only a 20%

error can be afforded in the on-site integrals. The discussion in Chap. 3.3.2 shows

that the dominant integrals must be considered uncertain to about 20-30%. The

tight-binding description of Coulomb interaction can therefore be considered reliable

for dots with radii larger than 15–20Å.

3.4 Exchange Interactions

One of the interesting issues related to the exchange interaction of an electron-hole

pair is its effective range. In the effective mass approximation (EMA), the long-range

component of the exchange interactions for optically allowed exciton states vanishes

for spherical quantum dots due to spherical symmetries of their electron and hole

wave functions [1, 56]. According to the EMA calculations, the exchange interaction

between the lowest electron and hole state for spherical quantum dots is given by its

short-ranged component:

〈eh|K|eh〉 = Cexch

(
ax
R

)3

Ex, (3.28)
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where R is the dot radius, Ex and ax are the bulk exciton exchange splitting and

radius, respectively. The dimensionless constant Cexch is 2.111 for spherical quantum

dots [1, 56]. In contrast to the EMA calculations, pseudo-potential calculations show

that there is a long-range component in the exchange interaction for several direct-

gap semiconductor quantum dots [46, 57]. Motivated by the discrepancy between the

two models, we investigate the effective range of the exchange interactions in detail

with the tight-binding model.

To verify the effective range of the exchange interactions, we impose a cutoff range

on the Coulomb potential in the exchange interaction and calculate an exchange

energy as a function of the cutoff distance. As the cutoff distance increases for a

given electron-hole configuration, the exchange interaction eventually saturates to a

final value. If this saturation occurs over just a few atomic sites, we call it short

ranged, while long ranged exchange implies that the saturation occurs over distances

comparable to the dot size. With the step function Θ(r), we replace the Coulomb

potential with a cutoff potential Θ(rc−|r− r′|)/|r− r′| to obtain an exchange energy

as a function of cutoff distance rc. The unscreened exchange energy with the cutoff

potential for the electron-hole state |eh〉 is

〈eh|K0(rc)|eh〉

= e2
∑

σ,σ′

∫ ∫
d3r′ d3r

ψ∗e(r
′, σ′)ψ∗h(r

′,−σ′)ψe(r, σ)ψh(r,−σ)

|r′ − r| Θ(rc − |r′ − r|)

≈ e2
∑

n1,n2,σ,σ′
c∗e;n1σ

c∗h;n1−σce;n2σ′ch;n2−σ′ ω
0
Coul(n1, n2) Θ(rc − |Rn1 −Rn2 |)

+2e2
∑

n1,n2,σ,σ′
c∗e;n1σ

c∗h;n2−σce;n2σ′ch;n1−σ ω
0
exch(n1, n2), (3.29)

where the superscript 0 refers to the unscreened interaction. In line with the discrete

spatial character of the tight-binding model, we make an approximation that replaces
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the true cutoff potential with one based on the site indices Θ(rc−|Rn1−Rn2 |). If there

is a long-range exchange interaction, it would stem from the first term of Eq. (3.29)

which includes the Coulomb integrals. The second term, the sum of exchange inte-

grals, has only onsite integrals, since all off-site exchange integrals are negligible as

shown in Chap. 3.3.2.

To understand the physical origin of the long-range exchange, we expand the

exchange interaction K0 in a multipole expansion:

〈eh|K0|eh〉 ≈
∑

i6=j

q(Ri)
∗
eh q(Rj)eh

|Ri −Rj|
+O(|Ri −Rj|−2) + on-site int. (3.30)

The last term of Eq. (3.30) referred to as the on-site interaction is composed of

the contributions of on-site Coulomb and exchange integrals. The ‘exchange charge

density’ q(Ri)eh at atom site Ri with site index i is a monopole moment defined as

q(Ri)eh ≡ e2
∑

σ

∫
dΩi ψe(r, σ)ψh(r,−σ)

= e2
∑

γγ′σ

ce;iγσch;iγ′−σ

∫
d3r φiγ(r)φ∗iγ′(r)

= e2
∑

γγ′σ

ce;iγσch;iγ′−σδγγ′

= e2
∑

γσ

ce;iγσch;iγ−σ, (3.31)

where
∫

dΩi is defined to integrate only the orbitals on the atom site Ri. For clarity,

the tight-binding orbital index n is specifically replaced by the atom-site index i and

the orbital-type index γ. Note that the final expression for q(Ri)eh has a sum over only

one orbital-type index due to the assumed orthogonality of the tight-binding basis

orbitals. The distribution of the exchange charge density determines the long-range

character of the exchange interaction. If the exchange charge density is zero, that

is, the electron and hole states are locally (on-site) orthogonal, there is no exchange
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interaction beyond the on-site contribution according to Eq. (3.30). In contrast, if the

exchange charge density is nonzero due to the local nonorthogonality of the electron

and hole wave functions from site to site, a long-range exchange interaction is caused

by the monopole-monopole interaction.

For Si, Figure 3.4 shows that for the exchange interaction between the lowest

electron and hole state, there is a region of strong oscillations below a cutoff distance

of 15 Å. The strong oscillations are due to the phase difference between the electron

and hole states stemming from their different locations in k-space for an indirect-gap

material. The oscillations die out beyond a cutoff distance of about 15 Å, suggesting

that the effective range of the exchange interaction in Si quantum dots is around 15 Å

regardless of dot size. This short-ranged and oscillatory behavior is universal within

the configurations near the band edges.

For the direct-gap InAs and CdSe quantum dots, we calculate the unscreened

exchange interaction as a function of cutoff distance for several of the lowest electron-

hole configurations. We label the electron and hole states by the dominant angular

momentum character of their envelope functions. Here, the envelope function refers

to the coefficient of the dominant basis orbital. The s and p basis orbitals are typically

dominant in the electron and hole states, respectively. To be clear about our notation,

‘s-like hole’ means that the coefficients of the p basis orbital has s symmetry in real

space over the whole dot, whereas ‘p-like hole’ means that the coefficients of the p

basis orbital has p symmetry. For electron states, the coefficients of the s basis orbital

are used to label the wave functions. For example, ‘s-like electron’ means that the

coefficients of the s basis orbital has s symmetry, while ‘p-like electron’ has p symmetry

in the coefficients of the s orbital. In our calculations, a p-like hole is the lowest hole
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state and an s-like hole is the second-lowest hole state, whereas an s-like and p-like

electron are the lowest and second-lowest electron state. The order of the lowest and

second lowest hole states in terms of their envelope function symmetries are opposite

to that predicted by the EMA model [26]. In pseudo-potential calculations [18], the

hole wave functions exhibit a strong mixing of different angular momentum envelope

functions. The mixing is also observed in the tight-binding wave functions of excited

electron and hole states.

As shown in Figures 3.5 and 3.6, direct-gap quantum dots show a qualitatively

different behavior of the exchange interaction with respect to the cutoff distance from

the behavior for Si. First, since there is no overall phase difference between the elec-

tron and hole states, there is no region with oscillations for small cutoff distances.

Second, the exchange interaction for a particular electron-hole pair can grow con-

tinuously up to the dot radius. The figures show that the exchange interaction of

direct-gap materials is generally long ranged, extending over the whole dot.

To understand why some electron-hole configurations have a slowly varying long-

range exchange interaction, we analyze the long-range component by a multipole-

expansion as written in Eq. (3.30). The leading term of the long-range exchange

interaction is the monopole-monopole interaction. Therefore, the distribution of the

monopole moment, or the ‘exchange charge density’ defined in Eq. (3.31), determines

the range of the long-range exchange interaction.

The exchange charge density of an electron-hole pair has zero total charge due to

the orthogonality between the electron and hole wave functions. There are two ways

to satisfy this condition: the electron and hole states are either locally orthogonal,

which is enforced in the effective mass theory due to the orthogonality between the
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Bloch functions of the valence and conduction bands, or globally orthogonal which is

possible in the atomistic pseudo-potential and tight-binding theories. If the former

is true, the exchange charge density would be zero at each site and there would be

no monopole–monopole interaction. That would make the exchange interaction of

the electron-hole pair short ranged. By contrast, without onsite orthogonality the

exchange charge density has nonzero values, causing monopole-monopole interactions

that lead to significant long-range exchange interactions.

To show that the character of the orthogonality of the electron-hole configuration

determines the long-range behavior of the exchange interaction, we plot in Figure 3.7

the exchange charge density of two electron-hole configurations in CdSe that have

a long-range exchange interaction. Figure 3.7 shows the exchange charge densities

of (a) the s-like electron and s-like hole configuration, and of (b) the p-like electron

and s-like hole configuration in a plane going through the center of the dot for CdSe

with radius 21 Å. This figure shows that there is no local orthogonality between

the electron and hole wave functions. The orthogonality of the electron and hole

wave functions are instead satisfied by a p-like global oscillation (case a) or a 2s-like

global oscillation (case b). These shapes of the global oscillations explain why the

exchange interaction has growing and decaying regions over global distances as shown

in Figures 3.5 and 3.6. Those electron-hole configurations that do not have a long-

range exchange interaction have a much smaller exchange charge density than those

configurations that do have the long-range exchange interaction. These results show

that local nonorthogonality of the electron and hole wave functions leads to a strong
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monopole–monopole interaction, and that the global variations in the exchange in-

teraction depend on the particular way in which the exchange charge density globally

sums to zero for a specific electron-hole configuration.

3.5 Oscillator Strengths

In this section, we calculate the oscillator strength of the exciton level to determine

optically allowed levels. The oscillator strength of the electron-hole basis state |eh〉

is defined as

S(Eeh) =
2me

h̄
Eeh|〈eh|r̂|0〉|2, (3.32)

where me is the electron mass. The matrix element 〈eh|r̂|0〉 is the dipole moment

between initial state |0〉 with no electron-hole pair and final state |eh〉 with an electron-

hole pair. The exciton absorption spectrum is given by

σabs(E) ∼
∑

eh

S(Eeh)δ(E − Eeh). (3.33)

To mimic thermal broadening, exciton life times, etc, the exciton absorption peaks

are broadened with a Gaussian function:

σabs(E) ∼
∑

eh

S(Eeh) exp [−(E − Eeh)2/σ2], (3.34)

where σ is the linewidth of the Gaussian function, which is set to be 10 meV in this

work.

The dipole moment in the oscillator strength is naturally divided into two parts.

A single-particle state in the tight-binding model is composed of two functions: (i) an

envelope function describing the global variation and (ii) a basis orbital describing the

local variation. To match the composition of the state, the dipole moment operator r̂
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Figure 3.4: Unscreened exchange energy, Eq. (3.29), as a function of the cutoff dis-
tance, with the Coulomb potential replaced by a cutoff potential for various radii of
Si spherical quantum dots. The energies are for the lowest electron and hole wave
functions. All the curves show that there is an oscillation region for small cutoff
distances followed by a saturation region beyond 15 Å. This saturation suggests that
the effective range of the exchange interaction in Si quantum dots is around 15 Å
regardless of the dot radius.
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Figure 3.5: Unscreened exchange energy, Eq. (3.29), as a function of cutoff distance,
with the Coulomb potential replaced by a cutoff potential for the CdSe spherical
quantum dot of radius R=21 Å. The unscreened exchange energy of four different
types of electron-hole configurations is shown. The electron and hole configurations
are labeled by the dominant angular-momentum component of their envelope func-
tions [58]. Except for the s-like electron and p-like hole configuration, the variation
of the exchange interaction extends over the whole dot.
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Figure 3.6: Unscreened exchange energy, Eq. (3.29), as a function of cutoff distance,
with the Coulomb potential replaced by a cutoff potential for the InAs spherical
quantum dot of radius R=21 Å. The unscreened exchange energy of four different
types of electron-hole configurations is shown. The electron and hole configurations
are labeled by the dominant angular-momentum component of their envelope func-
tions [58]. Long-range exchange interactions appear for the s-like hole with both
s-like electron and p-like electron.
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Figure 3.7: Exchange charge densities q( ~R)eh from Eq. (3.31) of (a) the s-like electron
and s-like hole configuration, and of (b) the p-like electron and s-like hole configu-
ration for the CdSe quantum dot with radius 21 Å. The exchange charge density
is plotted in a plane through the center of the dot. The unit of the horizontal axes
is the lattice constant of CdSe. The plots show that the orthogonality between the
electron and hole wave functions is global not local, with a p-like oscillation or a
2s-like oscillation. These global oscillations of the exchange charge density lead to
the long-range variation of the exchange energies in Fig. 3.5.
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is decomposed into a discrete position vector operator r̂i of atom site i and a relative

position vector operator δr̂i = (r̂ − r̂i) [20]. With this decomposition, the dipole

moment matrix element becomes

〈eh|r̂|0〉 =
∑

ii′γγ′σ

c∗e;i′γ′σc
∗
h;iγ−σ[riδii′δγγ′ + 〈i′γ′|δr̂i|iγ〉]

≈
∑

iγγ′σ

c∗e;iγ′σc
∗
h;iγ−σ[riδγγ′ + 〈iγ′|δr̂i|iγ〉]. (3.35)

The second part of the dipole moment is approximated by including only the matrix

elements between the basis orbitals on the same atom site. This approximation is

reasonable since the retained matrix elements are dominant. The first part of the

dipole moment is the dipole moment between the envelope functions of the same

orbital, while the second part is that between the envelope functions of different

orbitals. From here on, we call the former an intra-orbital dipole moment and the

latter an inter-orbital dipole moment.

In both intra- and inter-orbital dipole moments, the total angular momentum

difference ∆J between electron and hole states should be unity. However, the rule

∆J = 1 is satisfied differently. The decomposition of the dipole moment operator

into r̂i and δr̂i leads to the decomposition of the total angular momentum operator

~J into two operators; ~J = ~L + ~j where ~L and ~j are the global angular momentum

operator of an envelope function and the local total angular momentum operator of

a basis orbital, respectively. The operator ~j is further given by ~l + ~s, where ~l and ~s

are the angular momentum and spin operator of a basis orbital. With respect to the

global L and local j angular momentum eigenvalues, the optical selection rules of the

intra- and inter-orbital dipole moments become

∆L = 1 and ∆j = 0, for intra-orbital, (3.36)
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Dipole moment Si (Å) Cd(Å) Se(Å) In(Å) As(Å)
〈s|δẑ|pz〉 0.773 ẑ 1.264 ẑ 0.679 ẑ 1.106 ẑ 0.754 ẑ
〈s∗|δẑ|pz〉 0.195 ẑ 0.281 ẑ 0.108 ẑ 0.196 ẑ 0.123 ẑ
〈pz|δẑ|d3z2−r2〉 0.216 ẑ 0.196 ẑ 0.034 ẑ 0.116 ẑ 0.049 ẑ
〈px|δẑ|dzx〉 0.187 ẑ 0.169 ẑ 0.029 ẑ 0.101 ẑ 0.043 ẑ
〈py|δẑ|dyz〉 0.187 ẑ 0.169 ẑ 0.029 ẑ 0.101 ẑ 0.043 ẑ

Table 3.7: Nonzero local dipole moments between basis orbitals for Si, Cd, Se, In,
and As atoms with a dipole operator in z direction. The real space description of the
basis orbitals is represented by Slater orbitals [51]. The dipole moments are calculated
with a numerical integration with the Simpson’s rule [59] for radial parts and an exact
integration for angular parts. The unit for the dipole moments is Å.

∆L = 0 and ∆j = 1, for inter-orbital. (3.37)

Table 3.7 lists the pairs of basis orbitals that have nonzero local dipole moments

because they satisfy the selection rule ∆j = 1. The dipole moments of those pairs are

evaluated with a numerical integration with Simpson’s rule [59] for the radial part

and an exact integration for the angular part. The calculated dipole moments are

listed in Table 3.7. An alternative way to determine the dipole moments is to fit them

to bulk absorption spectra [20].

3.6 Exciton Levels

Depending on whether to include correlation effects or not, we apply the con-

figuration interaction or the perturbation theory to solve the effective electron-hole

Hamiltonian He−h given by Eq. 3.4. In the configuration interaction scheme, we in-

clude sufficient electron and hole states to converge the lowest exciton energies to

within a few meV. The typical number of states included in the configuration inter-

action is 20 to 30. Within the configuration interaction, the exciton state |ex〉CI is a
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linear combination of the electron-hole basis states |eh〉s, and the exciton energy ECI
ex

is the eigenvalue of the effective electron-hole Hamiltonian:

|ex〉CI =
N∑

eh=1

ceh|eh〉, (3.38)

ECI
ex = CI〈ex|He−h|ex〉CI, (3.39)

where N is the number of electron-hole basis states included in the configuration

interaction. In the perturbation scheme, an electron-hole pair state is treated as

an exciton state, and an exciton energy is approximated by the sum of the electron

and hole energies and the first-order corrections of the electron-hole Coulomb and

exchange interactions:

|ex〉PT = |eh〉, (3.40)

EPT
ex = Ee + Eh +PT 〈ex|J |ex〉PT +PT 〈ex|K|ex〉PT. (3.41)

The energy ECI
ex includes correlation effects, while the energy EPT

ex excludes. There-

fore, we define the difference between the two energies as correlation energy ∆corr:

∆corr = ECI
ex − EPT

ex . (3.42)

Replacing EPT
ex with Eq. 3.41 shows the constituents of ECI

ex :

ECI
ex = Ee + Eh +PT 〈ex|J |ex〉PT +PT 〈ex|K|ex〉PT + ∆corr (3.43)

3.6.1 Si Quantum Dots

The lowest exciton energies calculated with the tight-binding parameters SiB and

SiC listed in Table 2.1, which gives good effective masses, are in significantly better

agreement with experiments than those with the parameters SiA in Table 2.1. The

difference between the two parameter sets lies in effective masses described by the
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parameters. The parameters SiB and SiC reproduce effective masses close to experi-

ments while SiA gives poor effective masses (see Table 2.2). Note that SiB is used for

conduction levels while SiC for valence levels. The lowest exciton energies, namely

exciton gaps, are calculated with the configuration interaction to include correlation

effects. Figure 3.8 shows that the exciton gap with SiA gives a discrepancy as large

as 0.4 eV compared with experimental data [60]. In contrast, the exciton gaps with

SiB and SiC agree closely with experiments within an error of <0.1 eV (<5%). This

improvement shows that the good description of effective masses is essential to accu-

rately predict exciton energies.

To further examine the effect of changing parameters, we compare the electron-

hole interaction energies with the two parameter sets: (i) SiA and (ii) SiB and SiC .

In particular, we compare the Coulomb shift defined as the energy difference between

the single-particle gap and the exciton gap. Figure 3.9 shows that the Coulomb shifts

from the two parameter sets are very similar. This insensitivity indicates that the

better description of the exciton gap with the second parameter set is mainly due

to the better single-particle energies and not from a change in the Coulomb matrix

elements.

3.6.2 CdSe Quantum Dots

Figure 3.10 shows that exciton gaps of CdSe dots calculated with the configura-

tion interaction agree well with experimental gaps [27]. The difference between the

calculated and experimental gaps is less than 3% (70 meV). The single-particle gap is

also plotted in Fig. 3.10. The Coulomb shift, the difference between the single-particle

gap and the exciton gap, ranges from 0.4 eV to 0.1 eV as the dot radius varies from
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Figure 3.8: Exciton gap of Si spherical quantum dots versus dot radius. The pho-
toluminescence data are taken from Ref. [60]. The other two sets of exciton gaps
are calculated with the tight-binding parameters of Vogl et al. [36] and Klimeck et
al. [38] listed in Table 2.1, respectively. The Klimeck parameters give significantly
better agreement with the experiment than the Vogl parameters. This good agree-
ment is due to the improved effective masses obtained with the Klimeck parameters.
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Figure 3.9: Coulomb shift versus dot radius. The Coulomb shift defined as the
difference between the single-particle gap and the exciton gap is calculated with two
different tight-binding parameter sets: the set of Vogl et al. [36] and the set of Klimeck
et al. [38] listed in Table 2.1. The Coulomb shift does not vary much between the
two parameter sets.
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10 Å to 40 Å. Pseudo-potential calculations [35] underestimate the exciton gap by

∼0.3 eV. The Coulomb shifts predicted by the pseudo-potential model are comparable

with our calculations.

Figure 3.11 plots correlation, Coulomb, and exchange energies contributing to

the exciton gap with respect to dot radius R. The correlation energies, defined in

Eq. 3.42, are about -10 meV and scales as −R−0.86. The Coulomb and exchange

energies are the first order corrections of the electron-hole Coulomb and exchange

interactions to the exciton gap. The Coulomb energy scales as −R−1.24, while the

exchange energy as R−3.10. These scaling behaviors are similar to those predicted by

the effective mass approximation, i.e. −R−1 for the Coulomb energy and R−3 for

the exchange energy. [16] The Coulomb energies are 2-3 orders of magnitude larger

than the exchange energies. The exchange energy decreases quickly as the dot size

increases, yielding an exchange energy smaller than a correlation energy.

3.6.3 InAs Quantum Dots

For InAs quantum dots, we calculate low-lying exciton energies with the pertur-

bation theory, but not with the configuration interaction since the studies of Si and

CdSe dots show that correlation energies are smaller than our accuracy level 10 meV

for dot radii we consider (R >10 Å). Within the perturbation theory, we calculate ex-

citon absorption spectra using Eq. 3.34. Figure 3.12 presents the exciton absorption

spectra calculated with the sp3d5s∗ model using the parameter set listed in Table 2.1.

As the radius increases, exciton energies decrease and their energy spacings become

smaller. However, the absorption rate of each exciton level remains relatively un-

changed. The lowest exciton level indicated by the arrow in Fig. 3.12 always shows
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Figure 3.10: Exciton gap and single-particle gap of CdSe dots vs. dot radius. The
photoluminescence excitation (PLE) experimental gaps are taken from Ref. [27]. The
exciton gaps of the pseudo-potential (PP) calculations [35] are about 0.15 eV smaller
than the experimental gaps. Our exciton gaps are in good agreement with the exper-
imental gaps.

69



10 15 20 25 30 35 40

Dot radius (Å)

0.1

1.0

10.0

100.0

1000.0

E
ne

rg
y 

(m
eV

)
Coulomb
Correlation
Exchange

CdSe

Figure 3.11: Coulomb, exchange, and correlation energies for the exciton gap of CdSe
quantum dots vs. dot radius R. The Coulomb and exchange energies are the first-
order correction of electron-hole Coulomb and exchange interactions to the exciton
gap, and the correlation energy is defined in Eq. 3.42. The Coulomb and correlation
energies are negative, but plotted as positive to compare their magnitudes with the
positive exchange energy. The lines are R−1.24, R−3.10, and R−0.86 fits for the Coulomb,
exchange, and correlation energies, respectively. The correlation coefficients of the
fits are >0.97. The scaling laws for the Coulomb and exchange energies are similar
to those predicted by the effective mass approximation. [16]
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a weak oscillator strength regardless of the dot radius. The first three bright-exciton

levels are identified by the first three pronounced peaks of the absorption spectra as

shown in Fig. 3.12. We label the first three bright-exciton levels B1, B2, and B3,

respectively. Table 3.8 lists the electron and hole levels of B1, B2, and B3.

To examine the effect of the inclusion of spin-orbit coupling and d orbitals, we

also calculate exciton absorption spectra with the sp3s∗ tight-binding models includ-

ing and excluding spin-orbit coupling. Figure 3.13 presents absorption spectra cal-

culated with the two models in comparison with the spectrum calculated with the

sp3d5s∗ model. The dot radius for these absorption spectra is 25 Å. The inclusion of

spin-orbit coupling increases the exciton energies by 50–100 meV. The inclusion of d

orbitals further increases the energies by ∼100 meV. For all these absorption spectra,

the lowest exciton level indicated by the arrow in Fig. 3.13 shows a weak oscillator

strength. Especially when spin-orbit coupling is excluded, the oscillator strength of

the lowest exciton level is zero.

The increase of the exciton energies due to the inclusion of spin-orbit coupling and

d orbitals can be explained by changes in the effective masses of electrons and holes.

When spin-orbit coupling is excluded, the highest valence band consists of four-fold

heavy-hole band and two-fold light-hole band. In contrast, the inclusion of spin-orbit

coupling splits the band into three bands, two-fold heavy-hole band, two-fold light-

hole band, and two-fold spin-split band, as shown in Fig. 2.1. The effective-mass

of the spin-split band is lighter than that of the heavy-hole band. Therefore, the

averaged effective mass of the valence band becomes lighter with spin-orbit coupling

included. The effect of the inclusion of d orbitals is subtle as shown in Fig. 2.2. Near

the Γ point, the bulk band structure does not change as the d orbitals are included.
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However, as k points move away from Γ, the band curvature of the lowest conduction

band becomes larger and those of the three highest valence bands become smaller.

Therefore, overall lighter electrons from the conduction band give rise to the increase

of exciton energies. Likewise, overall heavier holes from the valence band lead to the

decrease of exciton energies. The increase of the exciton energies due to the lighter

electron is larger than the decrease of the exciton energies due to the heavier hole,

yielding the increased exciton energies with d orbitals included.

Figure 3.14 shows the size dependences of the first bright-exciton (B1) energies

calculated with the three models, in comparison with PLE experiments [26]. The

inclusion of spin-orbit coupling and d orbitals leads to a better agreement with PLE

experiments for large dots. For small dots, the three models predict strong curva-

tures of B1 energies in contrast to the flat curvatures of the experimental energies.

The effective mass approximation [26] and the empirical pseudo-potential model [18]

also predict strong size dependences of B1 energies in small dots. Since the sp3d5s∗

model describes the best exciton energies for large dots among the three tight-binding

models, we focus on the exciton absorption spectra calculated with the sp3d5s∗ model

from here on.

To understand the origin of the large or small oscillator strengths of several low-

lying exciton levels, we analyze the angular momenta of the electron and hole envelope

functions of the exciton levels. The envelope function is expanded in terms of spherical

harmonics Ylm(θ, φ) to determine the dominant angular momenta:

ca;iγσ ≡ ca;γ(Ri) =
∑

`m

α`mY`m(θ, φ), (3.44)
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Figure 3.12: Exciton absorption spectra of InAs dots with radius (a) 14 Å, (b) 19 Å,
and (c) 25 Å. The absorption spectra are calculated with the nearest-neighbor sp3d5s∗

tight-binding model using the parameters of Ref. [40]. The arrows indicate the lowest
exciton levels which have weak oscillator strengths. The first three pronounced peaks
B1, B2, B3 are identified as the first three bright exciton levels.
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Figure 3.13: Exciton absorption spectra of InAs quantum dots with radius 25 Å,
calculated with (a) the sp3s∗ tight-binding (TB) model without spin-orbit (SO) cou-
pling, (b) the sp3s∗ TB model with SO coupling, and (c) the sp3d5s∗ TB model with
SO coupling. Tight-binding parameters for the three models are listed in Table 2.1.
The arrows indicate the lowest exciton levels which have weak oscillator strengths.
The first three pronounced peaks B1, B2, B3 are identified as the first three bright
exciton levels. The inclusion of SO coupling increases exciton energy by 50–100 meV
and the inclusion of d orbitals further increases by ∼100 meV.
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Figure 3.14: Lowest bright-exciton energies of InAs quantum dots versus dot radius.
The lowest bright-exciton energies are calculated with the tight-binding (TB) model
using three different sets of TB parameters listed in Table 2.1. The inclusion of spin-
orbit coupling (SO) and d orbitals raises the energies as much as 0.2 eV, and gives
agreement with the gaps measured by photoluminescence excitation (PLE) experi-
ments [26] for large dots. It is not understood why the experimental curve is so much
flatter than the theoretical curves.
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Level Composition ce;s ce;p ch;s ch;p

B1 e1 + h2 s-like p-like p-like (s+p)-like
B2 e1 + h5 s-like p-like p-like (s+p)-like
B3 e2 + h1 p-like (s+p)-like p-like p-like

Table 3.8: Electron and hole levels of the first three bright-exciton levels, and the
dominant angular momenta of the electron and hole envelope functions. The first
three bright-exciton levels are identified by the three pronounced peaks B1, B2, and
B3 of absorption spectra shown in Fig. 3.12. The compositions of B1, B2, B3 levels
are listed in terms of their electron and hole levels. The nth lowest electron and the
nth lowest four-fold hole levels are labeled as en and hn, respectively. The dominant
angular momenta of the electron and hole envelope functions are determined by ex-
panding the envelope functions in terms of spherical harmonics. ce;s and ce;p denote
the electron envelope function of the s and p orbitals, respectively. Likewise, ch;s and
ch;p refer to the hole envelope function of the s and p orbitals, respectively.

where the index a denotes e and h for electron and hole, respectively. The vector Ri

is a position vector of atom site i. The dominant angular momenta of the envelope

functions of the three lowest bright-exciton levels are listed in Table 3.8.

The distributions of electron and hole states in terms of orbital types determine

which pair of electron and hole envelope functions contributes the most to the oscilla-

tor strengths. Table 2.5 shows that the s and p orbitals are the dominant orbitals of

electron and hole states, respectively. Moreover, the p orbitals are the most common

orbitals between the electron and hole states. Therefore, the principal part of the

inter-orbital dipole moment is that between the s-orbital electron and the p-orbital

hole envelope functions. Likewise, the principal part of the intra-orbital dipole mo-

ment is that between the p-orbital electron and hole envelope functions. These two

principal dipole moments contribute the most to the oscillator strengths.
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Based on the angular-momentum selection rules of the dipole moments and the

dominant angular momenta of the envelope functions, we can answer two important

questions: (i) why the lowest exciton level composed of the lowest electron and hole

level is dim; and (ii) what makes the bright-exciton levels bright? (Is it the intra-

orbital dipole moment, inter-orbital dipole moment, or both?) In the lowest exciton

level, the angular momentum selection rules are unsatisfied by the principal parts of

the intra- and inter-orbital dipole moments. The small oscillator strength of the lowest

exciton level arises from two small parts of dipole moments: (i) the intra-orbital dipole

moment between the s-like s-orbital electron and the p-like s-orbital hole envelope

function, and (ii) the inter-orbital dipole moment between the p-like p-orbital electron

and the p-like s-orbital hole envelope function. Typically, the oscillator strength of the

lowest exciton level is smaller by two orders of magnitude than that of bright-exciton

levels.

The large oscillator strengths of the bright-exciton levels originate from both large

inter- and intra-orbital dipole moments. Unlike the lowest hole level, the second lowest

hole level has the (s+p)-like p-orbital envelope function. Therefore, the exciton level

B1 made from the first lowest electron and the second lowest hole levels are bright

due to the following contributions: (i) the p-like p-orbital electron and the s-like p-

orbital hole envelope function yield a large intra-orbital dipole moment; (ii) the s-like

s-orbital electron and s-like p-orbital hole lead to a large inter-orbital dipole moment.

The intra-orbital dipole moments are typically larger than the inter-orbital dipole

moment by a factor of ∼10 in terms of their norms [61]. Similar analyses can explain

the origin of large oscillator strengths of other bright-exciton levels.
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Due to the interplay between quantum confinement and spin-orbit coupling, the

order of hole levels changes as a dot size changes. In small dots where level spacings

∆qc due to quantum confinement are larger than spin-orbit splitting energies ∆so,

several two-fold hole levels appear in-between four-fold hole levels. However, less

two-fold hole levels appear close to the band edges in large dots where ∆qc is smaller

than ∆so. In fact, for our biggest dots (R=35 Å) the first four lowest hole levels are

four-fold.

The exciton levels composed of the two-fold hole levels near band edges and the

lowest electron level are dark. In the exciton levels, the electron and hole envelope

functions have the same total local angular momentum (j = 1
2
) and the same global

angular momentum (L = 0). Since the difference of the total angular momenta

between the electron and hole level is zero, the exciton levels are optically forbidden.

In higher hole levels, two-fold hole levels with L = 1 emerge and they form bright-

exciton levels with the lowest electron level. These exciton levels correspond to small

peaks between B2 and B3 in Fig. 3.12.

Figure 3.15 presents the size dependences of the three lowest bright-exciton ener-

gies identified in the absorption spectra shown in Fig. 3.12. The exciton energies are

compared with those of PLE experiments [26]. The calculated energies with radius

R < 20 Å agree with the experimental energies within a 10% (100 meV) error. How-

ever, for smaller dots the calculated energies scale as R−0.8 while the experimental

energies scale as R−n with n ≈ +0. Therefore, the discrepancy grows rapidly with de-

creasing the dot size. The flat curvature of the experimental energies of the small dots
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is understood neither by the present tight-binding model nor by other empirical mod-

els [18, 26]. The disagreement between our calculations and the experiments in small

dots is partly attributed to the uncertainties of experimental size determinations [26].

Since precise experimental size determinations are difficult, it is more reliable to

compare exciton energies relative to the lowest bright-exciton energy. Figure 3.16

presents B2 and B3 energies relative to B1 energies with respect to B1 energies.

B3 energies agree well with corresponding experimental values, E5 in Ref. [26], in

a wide range of B1 energies. B2 energies agree less well with experimental values,

E3 in Ref. [26], in particular for large B1 energies which correspond to small dots.

Moreover, the experimental data for B2-B1 energies show discrete jump around the

B1 energy of 1.3 eV, indicating a level crossing. This jump is not predicted by our

calculations. The calculated B2 energies agree better with the experiment as a B1

energy decreases, that is, a dot size increases.

Figure 3.16 shows that the present model gives a better description of electron

level spacings than hole level spacings. The energy difference between B1 and B2

is roughly the spacing between the second and fifth four-fold hole levels, while the

difference between B1 and B3 is the spacing between the first and second electron

levels. Since calculated energies B3-B1 agree with experimental values better than

B2-B1, the electron level spacing is better described by our model than the hole.

This can be explained by the difference between the characters of InAs conduction

and valence bands. The lowest conduction band near the Γ point is almost isotropic

and has no spin-orbit coupling. In contrast, the highest valence bands are complex due

to the anisotropic effective masses of the heavy hole band, and the couplings among

the heavy-hole, light-hole, and spin-split bands. Although the coupling between the
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conduction and valence bands mixes band contributions to single-particle levels, the

main parts of the electron and hole levels are from the conduction and valence bands,

respectively. Hence, the complexity of the valence band structure makes it more

difficult to obtain a good description for the hole levels than for the electron levels.

3.7 Discussion

In this chapter, we have addressed four relevant questions regarding the modeling

of exciton levels near the band edges for both direct-gap and indirect-gap semicon-

ductor quantum dots. First, we examined to what degree the choice of the real-space

atomic basis orbitals affects the electron-hole Coulomb interaction. We find that the

sensitivity of the Coulomb interaction to the real-space description of the basis or-

bitals decreases quickly as the dot size increases. Our results shows that tight-binding

descriptions of electron-hole Coulomb interactions in quantum dots should be reliable

for dots larger than 15–20 Å radius even for simple models for the basis orbitals. More

detailed calculations of basis orbitals are required for smaller dots.

Second, we studied the effective range of the electron-hole exchange interaction

in a quantum dot. Replacing the Coulomb potential with a cutoff potential, we

explored the dependence of the exchange interaction on the cutoff radius. For direct-

gap materials, the lack of on-site orthogonality causes the exchange interaction to be

long ranged. For an indirect material Si, the calculations show that the exchange

interaction is oscillatory and has a range of about 15 Å, regardless of dot radii.

Third, we investigated correlation effects due to the interactions between different

electron-hole configurations on exciton energies. For a quantum dot with radius

R=10–40 Å, we find that the correlation energy contributing to a low-lying exciton
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Figure 3.15: Three lowest bright exciton energies of InAs quantum dots vs. dot
radius. The three lowest bright exciton energies in the present sp3d5s∗ tight-binding
(TB) model are determined by the energies of the peaks B1, B2, and B3 defined
in Fig. 3.12. The present exciton energies are compared with the energies of the
first three strong photoluminescence peaks labeled as E1, E3, and E5 in Ref. [26],
respectively. The calculated energies agree better with the experimental energies as
the dot size increases.
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Figure 3.16: First three bright exciton energies relative to the lowest bright exciton
energy plotted with respect to the lowest bright exciton energy for InAs quantum
dots. The first three exciton energies using the present sp3s5s∗ tight-binding (TB)
model are identified by the peaks B1, B2, and B3 in the absorption spectra shown
in Fig. 3.12. The spacings of the identified three exciton energies are compared with
the energy spacings of the first three strong photoluminescence peaks labeled as E1,
E3, and E5 in Ref. [26], respectively.
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energy is about 10 meV. By comparing it with other components of the exciton energy,

we find a clear hierarchy of the contributions of the components to the exciton energy

for the dot sizes considered in this work. The contribution of a single-particle energy

is on the order of 1 eV, that of a Coulomb energy is 100 meV, and that of the

exchange energy is 1 meV or smaller. As dot sizes increases, single-particle energy

spacings become as small as Coulomb interaction matrix elements between different

electron-hole configurations. Therefore, larger correlation energies relative to the

other components are expected in larger dots.

Fourth, we tested how well the tight-binding model describes the low-lying exciton

levels by comparing with experimental data. For exciton gaps, we obtained good

agreement with recent experiments for both Si and CdSe quantum dots. The gaps

for InAs quantum dots with radius larger than 20 Å are also in good agreement with

experiments. For Si dots, we improved the agreement with experimental data by

optimizing the tight-binding parameters to give good effective masses. For InAs dots,

we improved the description of exciton energies by including spin-orbit coupling and

d orbitals. The inclusion of spin-orbit coupling and d orbitals increases the exciton

energies as much as 0.2 eV, yielding better agreement with experiments. We also

identified several low-lying bright-exciton energies beyond the exciton gaps for InAs

dots by evaluating the oscillator strengths of exciton levels. The identified first three

lowest bright-exciton energies are in good agreement with experiments with radius

larger than 20 Å. We successfully explained the origins of strong or weak oscillator

strengths of the exciton levels in terms of the dominant angular momenta of exciton

envelope functions.
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CHAPTER 4

MULTIPLY CHARGED QUANTUM DOTS

The whole of science is nothing more than a refinement of everyday thinking.

-Albert Einstein

The success of quantum-dot based, electronic devices relies on the efficiencies and

good controls of injecting charge carriers into dots and transporting the carriers be-

tween dots. One of the key parameters in controlling the carrier transfer in quantum-

dot electronic devices is energies required to transfer charge carriers between metal

leads and dots. In this chapter, we model the energies required to add electrons and

holes into dots, which are called electron and hole addition energies, respectively. We

focus on the addition energies of InAs quantum dots in this work, but the present

model can be applied to Si and CdSe dots.

Recently, the electron and hole addition energies of InAs quantum dots were mea-

sured by STM experiments.[28] In the experiment, the tunneling current between an

STM metallic tip and an InAs dot were measured as a function of bias-voltage. Fig-

ure 4.1 shows the STM experimental setup and a schematic diagram of differential

conductance of the tunneling current as a function of bias voltage. The STM exper-

imental setup is designed to have most of the bias voltage drop across the junction
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Figure 4.1: Schematic description of a differential conductance spectrum of a quantum
dot. Important physical quantities are labeled according to the definitions made in
the paper. The inset is a schematic drawing of an STM experimental setup [28].

(J1 in the inset of Fig. 4.1) between the STM tip and the dot [28]. Therefore, we

interpret the bias voltage as the STM-tip Fermi energy relative to the dot Fermi en-

ergy. Whenever the STM-tip Fermi energy matches the electron and hole addition

energies, there is a dramatic increase in the tunneling current. Therefore, the STM-

tip Fermi energies (or the bias voltage) of tunneling-conductance peaks correspond

to the addition energies.

The addition energies are composed of (i) single-particle energies of a dot and

(ii) charging energies for single-electron transfer between a dot and a metal lead [19].

Within the capacitor model, a charging energy for adding an electron or a hole in a

system is e2/Ceff where Ceff is an effective capacitance of the system. The capacitance

Ceff depends on the geometry and dielectric constant of the system, but does not
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depend on the number of charges nor on the charge distributions in the system.

The capacitor model sufficiently describes charging energies when the polarization

of a system is a dominant source of the charging energy, and Coulomb interactions

between charge carriers are negligible. However, for systems as small as quantum

dots, strong quantum confinement enhances the Coulomb interactions. Furthermore,

both the polarization and Coulomb energies are sensitive to charge distributions in

strongly confined systems. Due to the limits of the capacitor model, we use a different

model which includes charge-carrier Coulomb energies and describes charging energies

in terms of charge distributions.

4.1 Model

The energy condition for an electron to tunnel from a metal lead to a quantum

dot charged with (n − 1) electrons is met when the Fermi level of the metal µM
F is

resonant with an nth electron addition energy µe
n of the dot:

µM
F = µe

n. (4.1)

The nth electron addition energy is composed of three types of energies, i.e.

µe
n = Ee

n + Σpol,e
n +

n−1∑

i=1

Jee
i,n. (4.2)

The first term Ee
n is the energy of the nth electron level of the dot. The last two

terms account for charging energies due to the polarization of the dot environment

and many-body interactions. Specifically, the second term Σpol,e
n denotes the self-

polarization energy of the nth electron. The self-polarization energy is caused by

the interaction between one electron and polarized charges at surface included by the

electron. Note that the dielectric mismatch between the dot and its surrounding leads

86



to nonzero net polarized charges at the surface as shown in Fig. 4.2. The third term

Jee
i,n represents a Coulomb energy due to the interaction between the nth electron

and an electron in the dot. The Coulomb energy J ee
i,n has two components: a direct

Coulomb energy Jdir
i,n and a polarized Coulomb energy Jpol

i,n . The direct Coulomb

energy results from a Coulomb interaction between two electrons in the absence of

the dielectric mismatch at the surface. The polarized Coulomb energy is a correction

to Jee
i,n due to the dielectric mismatch. The polarized Coulomb energy is caused by

the interaction between one electron and polarized charges at the surface induced

by another electron. Figure 4.3 illustrates Coulomb interactions responsible for the

self-polarization energy and the polarized Coulomb energy. Note that the exchange

interaction between the nth electron and the other electrons in the dot is ignored in

the present model since it is smaller than the experimental resolution (∼ 10 meV) [28].

An electron can tunnel from a quantum dot charged with (n− 1) holes to a metal

lead when the Fermi energy of the metal lead is the negative of an nth hole addition

energy µh:

µM
F = −µh

n, (4.3)

The nth hole addition energy consists of four types of energies:

µh
n = Eh

n + Σpol,h
n +

n−1∑

i=1

Jhh
i,n +Wn. (4.4)

Removing an electron from the dot charged with (n− 1) holes can be seen as adding

an nth hole to the dot. An nth hole level energy Eh
n is the negative of the energy of

the valence electron removed from the dot. Similar to those in the electron addition

energy, the charging energies Σpol,h
n and Jhh

i,n account for a hole self-polarization energy

and a hole-hole Coulomb energy, respectively.
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Figure 4.2: Polarized charges at the surface between the dot and its surrounding.
When a charge is injected to the dot, a dielectric mismatch between the dot and its
surrounding leads to nonzero net polarized charges at the surface. The curved arrow
indicates the direction of the charge injection. The sign of the net polarized charges
depends on the relative size of the dot’s dielectric constant (εin) to the surrounding’s
dielectric constant (εout).

The last term in Eq. 4.4 represents the work required to remove an electron from

the dot and add it to the metal lead in the presence of n holes in the dot. From here

on, we call the last term an electron-removal work function. The electron-removal

work function does not exist in the electron addition energies due to the screening

effect of free electrons in the metal. When electrons tunnel from a metal lead to a dot

and leave holes in the metal, the electric field generated by the holes is completely

screened out by other free electrons in the metal. In other words, the tunneling

electron does not see an attractive electric field generated by the holes in the metal.

In contrast, when electrons tunnel from a dot to a metal lead, holes left in the dot

are only partially screened by valence electrons in the dot. More importantly, the

electron-removal work function is different from conventional work functions, which
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Figure 4.3: Coulomb interactions responsible for (a) self-polarization energies and (b)
polarized Coulomb energies. The self-polarization energy results from the Coulomb
interaction between one injected electron and polarized charges at the surface included
by the injected electron, while the polarized Coulomb energy results from the inter-
action between one injected electron and polarized charges included by one electron
residing in the dot. The curved arrows represents the direction of charge injection. In
(b), the symbol + at the center of the dot represents the residing electron while the
other + in the dot represents the injected electron. The dashed lines with arrowheads
indicate the responsible Coulomb interactions. The polarized charges are illustrated
in the case that the dot’s dielectric constant (εin) is bigger than the surrounding’s di-
electric constant (εout). When εin > εout, the self-polarization energy and the polarized
Coulomb energy are positive due to the repulsive Coulomb interaction between the
injected electron and the polarized charge. Conversely, when εin < εout the energies
are negative due to the attractive Coulomb interaction between an injected electron
and a polarized charge.
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arise from charging distortions at surfaces. Although the conventional work function

affects tunneling rates, it does not affect the energy condition of tunneling.

The absolute positions of the conductance peaks measured by STM experiments

vary with respect to the Fermi energy of an unbiased STM tip, but spacings between

the peaks remain the same. In the present model, the spacings are

∆e
n,n+1 ≡ µe

n+1 − µe
n

= Ee
n+1 − Ee

n + Σpol,e
n+1 − Σpol,e

n +
n∑

i=1

Jee
i,n+1 −

n−1∑

i=1

Jee
i,n, (4.5)

∆h
n,n+1 ≡ µh

n+1 − µh
n

= Eh
n+1 − Eh

n + Σpol,h
n+1 − Σpol,h

n +
n∑

i=1

Jhh
i,n+1 −

n−1∑

i=1

Jee
i,n +W1. (4.6)

Wn is roughly n times bigger than W1, assuming that the charge distribution of holes

in the dot is almost spherically symmetric. Therefore, the electron-removal work

function difference Wn+1 −Wn is replaced with W1 in ∆h
n,n+1. The spacing ∆n,n+1

and the addition energy µn are connected with corresponding quantities in a schematic

tunneling spectrum plotted in Fig. 4.1.

The single-particle levels of InAs dots for the addition energies are calculated with

the tight-binding model described in Chap. 2. We find from the study of exciton levels

in Chap. 3 that the inclusion of d orbitals and spin-orbit coupling improves the single-

particle energies. Therefore, we choose the sp3d5s∗ tight-binding model including the

spin-orbit coupling to calculate single-particle energies and states. Tight-binding

parameters for the model are listed in Table 2.1.
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4.2 Charging Energies

The calculation of the charging energies requires a description of the electrostatic

potential of a charged dot and the polarized environment. The potential is sensitive

to the system geometry. However, since details of the geometry of experimental

systems are unavailable [28] we approximate an inhomogeneous dot environment with

an infinite uniform dielectric medium [19, 62]. Although this idealized model is not

realistic, it captures the effects of a dielectric mismatch at the dot surface on the

charging energies [19]. Figure 4.4 shows both realistic and idealized models for the

polarization of a charged quantum dot and the dot environment.

When a dot is embedded in an infinite dielectric medium with dielectric constant

εout, an electrostatic potential generated by an elementary charge e at point s inside

the dot with dielectric constant εin and radius R is

V (r; s) = V dir(r; s) + V pol(r; s) (4.7)

= e

[
1

εin|r− s| +
εin − εout

εinR

∞∑

`=0

(
r

R

)α` ( s
R

)` (`+ 1)P`(r · s/rs)
εout + `(εin + εout)

]
, (4.8)

where α` is ` for r smaller than R, and −`− 1 for r larger than R [62]. The function

P`(x) is a `th Legendre polynomial. The first term V dir(r; s) is a Coulomb potential

of the source charge when there is no dielectric mismatch at the surface. The second

term V pol(r; s) results from the polarization of the dielectric medium different from

the dot polarization. In connection with the STM experimental setup [28] (see the

inset of Fig. 4.1), the second term is attributed to the polarization of the ligands, and

the image charges of the STM tip and the metal substrate.

For the potential V (r; s), the dielectric constants of the dot and the dot envi-

ronment need to be determined. The dielectric constant εin of the dot is modeled
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Figure 4.4: Schematic diagrams of the polarization of a charged quantum dot and
the dot environment in a realistic and an idealized model. In the realistic model,
the polarization strongly depends on the geometry of the dot environment such as
the shape of the STM tip and ligands, and distances between these components. In
the idealized model, the inhomogeneous dot environment is replaced with a uniform
dielectric medium characterized by an effective dielectric constant εout.
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with the dielectric function defined in Chap. 3.2. For V dir(r; s), we replace εin with

ε(|r − r′|, R) to include the size and particle-separation dependence. For V pol(r; s),

we replace εin with ε(∞, R) to treat the dot as a uniform dielectric medium. Note

that ε(|r− r′|, R) saturates to ε(∞, R) as |r− r′| approaches to ∼ 2 Å. The dielectric

constant εout of the dot environment is adjusted to fit ∆e
1,2 to an experimental value.

The three types of charging energies are calculated with charge densities given

by the tight-binding wave function ψ(r, σ) and with electrostatic potentials given

by Eq. (4.8). First, the self-polarization energy results only from V pol(r; s) because

the source charge does not interact with itself. The self-polarization energy of a ith

electron or hole is written as

Σpol
i =

e

2

∑

σ

∫
d3rV pol(r; r)|ψi(r, σ)|2, (4.9)

where ψi(r, σ) is the wave function of the ith electron or hole. Second, the Coulomb

energy between a pair of electrons or holes is given by

Ji,j = e
∑

σσ′

∫
d3r1d3r2V (r1; r2)|ψi(r1, σ)|2|ψj(r2, σ

′)|2. (4.10)

The Coulomb energy has two components: the direct Coulomb energy attributed

to V dir(r; s) and the polarized Coulomb energy to V pol(r; s). Finally, the electron-

removal work function is approximated as

W1 = −e
∑

σ

∫
d3r [V (rM; r)− V (rN; r)] |ψh(r, σ)|2

≈ e2

εout

[
1

R
− 1

R + d

]
, (4.11)

where rM and rN are the position vector of the closest outer surface of the metal lead

to the dot and that of the dot to the metal lead, respectively (see Fig. 4.4). The

final equation is obtained by approximating the charge density of a hole with that
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of a point charge e at the dot center and by ignoring higher order terms ` > 0 of

V pol(r; s). The symbol d is the closest distance between the dot and the metal lead

as shown in Fig. 4.4.

4.3 Zero-Current Energy Gap

One important physical value in the tunneling spectra is the spacing between

the first conductance peaks in a positive and a negative bias-voltage sides, which is

labeled as Egap in Fig. 4.1. This spacing is called a zero-current energy gap since a

tunneling current is suppressed within a voltage region between these two peaks. In

the present model, the zero-current energy gap is the sum of the first electron and

the first hole addition energies:

Egap ≡ µe
1 + µh

1

= Ee
1 + Eh

1 + Σpol,e
1 + Σpol,h

1 +W1. (4.12)

The zero-current energy gap differs from a single-particle energy gap by the sum of the

electron and hole self-polarization energies and the electron-removal work function.

To calculate the charging energies, the effective dielectric constant εout of the dot

environment and the closest distance d between the STM tip and the dot are esti-

mated. The dielectric constant εout is determined by fitting ∆e
1,2 to the corresponding

experimental value of an InAs dot with radius R=32 Å. The best fit of ∆e
1,2 is ob-

tained with εout = 4.5. For d, we use the distance of the tip closest approach to the

dot given by the length (∼ 5 Å) of ligands surrounding the dot, since the accurate

geometry of the STM setup is not available [28]. This approach provides the lower

limit of the electron-removal work function.
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Figure 4.5 presents the size dependences of the charging energies for the zero-

current energy gaps and that of the gaps with dot radii ranging from 15 Å to 35 Å.

Single-particle gaps contributing to the gaps range from 1.9 to 0.9 eV as the dot size

increases, while total charging energies vary from 220 to 90 meV. Within the total

charging energy, the electron and hole self-polarization energies are 80 to 40 meV

each, and the work functions are 60 to 10 meV. The calculated zero-current gaps

are compared with STM experimental gaps [28, 63]. As shown in Fig. 4.5(b), the

calculated gaps agree well with the experiment for a full experimental range of InAs

dot radii.

4.4 Electron and Hole Addition Energies

The electron and hole addition energies beyond the zero-current energy gap con-

tain charge-carrier Coulomb energies and excited single-particle energies. The lowest

electron level of InAs dots is two-fold, while the lowest hole level is four-fold. As a

result, the first two tunneling electrons are assigned to the lowest electron level. Sim-

ilarly, the first four tunneling holes are assigned to the lowest hole level. Therefore,

the spacing between the first two electron addition energies and those between the

first four hole addition energies are determined solely by the charging energies. In

contrast, the third electron and the fifth hole addition energies contain the energies

of the second lowest electron and hole levels in addition to charging energies, respec-

tively. The third tunneling electron is assigned to the second lowest electron level

since the lowest electron level is fully occupied by the first two tunneling electrons.

Likewise, the fifth hole is assigned to the second lowest hole level. Therefore, the spac-

ing between the second and third electron addition energies and that of the fourth
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Figure 4.5: (a) Calculated charging energies for zero-current energy gaps versus InAs
quantum dot radius R. (b) Zero-current energy gaps versus R. The size dependence
of each component of the charging energy – electron and hole self-polarization energies
and electron-removal work functions – is plotted. The zero-current gaps calculated
with the present tight-binding (TB) model are plotted with respect to dot radius in
comparison with those of pseudo-potential (PP) calculations [19] and STM experi-
ments [28]. The present TB gaps are in good agreement with the experiment for a
full range of dot radii (R=10–40 Å).
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electron addition energy spacing hole addition energy spacing
∆e

1,2 ≈ Jee ∆h
1,2 = ∆h

2,3 = ∆h
3,4 ≈ Jhh +W h

1

∆e
2,3 ≈ Ee

3 − Ee
2 + Jee ∆h

4,5 ≈ Eh
5 − Eh

4 + Jhh +W h
1

Table 4.1: Main contributions to addition energy spacings. The addition energy
spacings are mainly determined by the Coulomb energy of one pair of charge carriers
and a single-particle level spacing, since the variation of the self-polarization energies
of different charge-carriers and that of the Coulomb energies of a different pair of
charge-carriers are smaller than 10 meV. J ee (Jhh) is the Coulomb energy of one pair
of electrons (holes). Ee

3 − Ee
2 (Eh

5 − Eh
4 ) is the spacing between the first two lowest

electron (hole) levels.

and fifth hole addition energies are the sum of the level spacing and the charging

energies. The spacings between these low-lying electron and hole addition energies

are listed in Table 4.1.

Calculated addition energy spacings for InAs dots with various radii are com-

pared with those of STM experiments [28] in Fig. 4.6. The spacing ∆e
1,2 is in good

agreement with the experiment. Note that only ∆e
1,2 with dot-radius 32 Å is fitted

to experiments to determine εout. This agreement indicates that the present model

provides a good description of the Coulomb energy J ee. The spacing ∆e
2,3 agrees with

the experiment within a difference of less than 50 meV. This difference may result

from the experimental uncertainties of dot size determinations [28]. The relatively

good agreement in ∆e
2,3 shows that the second lowest electron level is well described

by the sp3d5s∗ nearest-neighbor tight-binding model.

The spacing ∆h
1,2 is overestimated by ∼25 meV in the present model as shown

in Fig. 4.6. The electron-removal work function may be the main cause of the small

discrepancy in ∆h
1,2, since the work function is modeled with a simplified description
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2,3 versus dot radius R.
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with Eqs. (4.5) and (4.6). The spacing ∆e
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the effective dielectric constant εout of the dot environment. The best fit is obtained
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of the dot environment, illustrated in Fig. 4.4. Unlike other types of charging energies,

the work function requires a good description of the electrostatic potential in a region

between the dot and the STM tip as shown in Eq. (4.11). To improve the work

function, an electrostatic potential of the inhomogeneous dot environment shown in

Fig. 4.4 needs to be calculated.

Figure 4.6(b) shows that the present model underestimates the spacing ∆h
4,5 by

∼100 meV (30%). The charging energy of ∆h
4,5 is the same as ∆h

1,2, and the charging

energy agrees with the experiment within an error of only a few tens of meV. There-

fore, the big discrepancy in ∆h
4,5 is attributed to the underestimation of the spacing

between the two lowest hole levels.

4.5 Discussion

In this chapter, we studied the quantum confinement and charging effects on the

transport properties of quantum dots by modeling the electron and hole addition

energies of InAs dots. The electron and hole addition energies consist of the single-

particle energies of the dots and the charging energies of single-electron transfer. The

charging energies are described in terms of (i) self-polarization energies, (ii) Coulomb

energies of excess charges, (iii) electron-removal work functions. Calculated zero-

current gaps, electron addition energies, and the first four hole addition energies are

in good agreement with STM experiments [28] within 10% error. However, the present

model underestimates the fifth hole addition energies by ∼100 meV, yielding a 25%

discrepancy with experimental values. This underestimation indicates that the hole

effective masses of bulk InAs in the present model are heavier than those of the real

material.
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The discrepancy in the fifth hole addition energy partly results from the perturba-

tive treatment of charging energies and the neglect of an external electric field in the

present model. The effects of charging and the external electric field on the single-

particle levels are ignored in the present and other models [19, 22]. Those models

assume that the single-particle levels of charged dots in an applied electric field are

the same as those of uncharged, unperturbed dots. The charging and electric field

effects are expected to be larger on higher addition energies which involve more excess-

charge-carriers and stronger electric fields. This expectation is consistent with our

results that show good agreement for zero-current gaps and several low-lying addition

energies with experiments but disagreement for the fifth hole addition energy.
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CHAPTER 5

CONCLUSIONS

My books are water; those of the great geniuses are wine. (Fortunately) Everybody

drinks water. -Mark Twain

This work demonstrated the success of the tight-binding model for describing the

many-body levels of optically excited and multiply charged quantum dots. First,

the calculated lowest exciton energies of Si and CdSe dots with 10–40 Å radius are

in good agreement with photoluminescence experiments within a less than 5% error

(see Figs. 3.8 and 3.10). Second, the calculated three lowest bright-exciton energies

of InAs dots with 20–40 Å radius show good agreement with photoluminescence

excitation experiments within a 5% error (see Fig. 3.15). Third, calculated several

low-lying electron and hole addition energies of InAs dots with 10–40 Å radius agree

with scanning tunneling microscope experiments within a 10% error (see Figs. 4.5

and 4.6).

In contrast to the success, the present tight-binding model does not agree well

with experiments for two following quantities. First, the bright exciton energies of

InAs dots with radius R < 20 Å are overestimated by as much as 0.5 eV or 25% (see

Fig. 3.15). The calculated exciton energies scale as R−0.8, while the experimental data
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scale asR−n with n ∼ +0. Hence, the calculated exciton energies rapidly increase with

decreasing the dot radius, yielding bigger discrepancies with experimental energies.

Second, the spacing between the fourth and fifth hole addition energies of InAs dots

with all radii (10-40 Å) considered in this work is underestimated by 0.1 eV or 30% (see

Fig. 4.6). Experimental uncertainties of size determinations [64] and bias-voltage drop

distributions [65, 66] make it difficult to identify the main causes of the disagreements.

Despite the difficulty, we focus on the possible causes of the disagreements resulting

from the limits of the present model, and point out the ways to improve the model

for future work. The discrepancies between our model and the experiments can be

explained by three possible reasons.

First, surface reconstruction and surface chemistry become important as quantum-

dot sizes cross from the mesoscopic scale to the molecular scale. The effects are ex-

cluded in the present model as we model the dot as a perfect zinc-blende structure

with all dangling bonds at the surface terminated. Tight-binding studies for CdSe

quantum dots show that the inclusion of the surface reconstruction decreases the low-

est bright-exciton energy by 100 meV for a dot with radius 12 Å [67]. Moreover, recent

first-principle calculations for Si nanoclusters show that imperfect surface passivation

can reduce the gap by as much as 1.6 eV [15]. Since the better surface descriptions

reduce excition energies, including surface reconstruction and realistic surface passi-

vation can improve the excition energies of small InAs dots, which are overestimated

by the present model.

Second, the transferability of bulk tight-binding parameters to describe the single-

particle Hamiltonian of quantum dots is limited within the present model due to the

difference between local charge densities of the dot and the bulk. The present model
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uses bulk parameters, which are fitted to bulk band structures, without correcting

them for quantum dots with respect to the change of the local charge density. The

density change arises from the difference between ionic potentials near the dot surface

and those in the bulk. Therefore, the density difference between the dot and the bulk

becomes larger as the ratio of surface to volume increases. Making the parameters

a functional of the charge density and achieving the self-consistency of the charge

density and the parameters improve the transferability for the tight-binding model to

describe solids with impurities, dislocations, and defects [68]. The same scheme can

be applied to improve the single-particle Hamiltonian of quantum dots.

Third, the single-particle levels of charged dots with an electric field applied are

different from those of uncharged dots in the absence of an electric field. The differ-

ences are neglected within the present model and other models [19, 22]. Self-consistent

calculations of single-particle levels in the presence of excess charges and an applied

electric field are needed to resolve the charging and the electric field effects on the

single-particle levels.

The success of the tight-binding model to describe the many-body levels of rel-

atively large chemically synthesized dots suggests that the tight-binding model can

quantitatively describe the optical and transport properties of larger quantum dots

such as self-assembled dots and vertical dots. The present model for electron-hole

interactions, electron-hole dipole moments, and charging energies, which are incor-

porated into the tight-binding model, can be extended to study the properties of

the large dots. The suitability of the tight-binding model for describing small dots

remains unresolved. Our results suggest that local effects, such as surface relaxation

103



and the change of local charge densities, must be included more carefully as the dot

size crosses from the mesoscopic scale to the molecular scale.
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APPENDIX A

ELECTRON AND HOLE LEVELS

This appendix presents how to connect single-particle energies (Ei) and wave

functions (|ψi〉) obtained by diagonalizing the effective single-particle Hamiltonian

(Eq. 2.1) to electron and hole energies (Ee and Eh) and wave functions (|e〉 and

|h〉) which are used in the modeling of exciton levels and electron and hole addition

energies. The electron level is the level with one electron added into the dot, while

the hole level is that with one electron removed from the dot. Therefore, the electron

and hole levels can be described by the single-particle levels with its energy higher

and lower than a Fermi energy. The Fermi energy of undoped semiconductors is

somewhere in the gap between the highest valence band and lowest conduction band.

By dividing the single-particle levels into two groups with respect to the Fermi

energy EF , the electron and hole energies and wave functions are defined as

|e〉 = |ψi〉 and Ee = Ei, if Ei > EF (A.1)

|h〉 = |ψi〉 and Eh = −Ei, if Ei < EF, (A.2)

where |ψi〉 is related to |ψi〉 as follows.

〈r, σ|ψi〉 = 〈r,−σ|ψi〉∗. (A.3)
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The hole wave function is the conjugate of the corresponding single-particle wave

function with its spin opposite to the single-particle’s spin. This relation is based

on the second quantization theory where a hole state is a state resulting from an

annihilation operator applied to an occupied level[69].

Within the tight-binding model, the electron and hole wave functions are linear

combinations of tight-binding basis orbitals |iγσ〉:

|e〉 =
∑

iγσ

ce;iγσ|iγσ〉, (A.4)

|h〉 =
∑

iγσ

ch;iγσ|iγσ〉, (A.5)

where

〈r, σ|iγσ〉 = φ∗iγ(r)χ∗−σ. (A.6)

The function φiγ(r) is a tight-binding basis orbital centered at atomic site i and with

orbital type γ, while χσ is a spin state, respectively. The coefficients ce and ch describe

global variations of the wave functions from one atomic site to another atomic site,

while the tight-binding basis orbitals |iγσ〉 and |iγσ〉 describe local variations of the

wave functions near one atomic site.
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