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Abstract—NASA’s space missions Dawn and JIMO will
use low-thrust propulsion for multi-revolution orbit transfers
around a central body. Here we address the problem of de-
signing low-thrust orbit transfers between arbitrary orbits in
an inverse-square gravity field by using evolutionary algo-
rithms to drive parameter selection in a Lyapunov feedback
control law (the Q-law). We develop an efficient and effica-
cious method to assess, with reasonable accuracy, the trade
off between propellant mass and flight time (i.e., to find the
Pareto front for these two quantities), and to provide the time
history of the state variables and the thrust vector for any cho-
sen point on the Pareto front. The examples considered are
several types of orbit transfers around the Earth and the as-
teroid Vesta. The optimized Q-law leads to a Pareto front
that contains the few available optimal solutions found with
other trajectory optimization algorithms. The Pareto front is
obtained within a few hours of computation time. It is both
the high optimization quality and the high computational ef-
ficiency that make our method attractive as a guiding tool for
the early design phases.
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1. INTRODUCTION

NASA’s future space missions Dawn and JIMO will use elec-
tric propulsion for inter-planetary cruise and orbital opera-
tions. The strength of electric propulsion is that in spite of its
low thrust levels, the momentum transfer to the spacecraft
per kilogram of expelled propellant is ten or twenty times
greater than for chemical propulsion. However, the controlof
continually-thrusting, low-thrust spacecraft poses a challeng-
ing design problem, particularly for orbit transfers around
a central body. Third-body perturbations and perturbations
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from non-spherical mass distributions in the central body of-
ten dominate the thrust. Yet even without these perturbations,
where only a simple inverse-square gravity field is consid-
ered, low-thrust orbit transfers are particularly challenging to
design due to the large number of revolutions around the cen-
tral body and the difficulty of selecting thrust directions and
thrust arc locations. Such transfers have been studied at least
since the 1950s [1][2]. While the ultimate goal may be to in-
clude the full gravity field, as a first step we address in this
paper the problem of designing low-thrust orbit transfers be-
tween arbitrary initial and final orbits in an inverse-square
gravity field. We couple the Q-law, which is a Lyapunov
feedback control law developed by Petropoulos [3][4], with
evolutionary algorithms to select parameters in the Q-law.

It has been demonstrated that the Q-law, with a reason-
able set of control parameters, efficiently finds approximate
Pareto-optimal solutions (i.e., a propellant-optimal solution
for a given flight time or a flight-time-optimal solution for a
given propellant requirement) [3][4]. On the other hand, a
grid sampling of the Q-law parameters suggests that a bet-
ter solution can be found if optimized Q-law parameters are
used [4]. Finding an optimal set of the Q-law parameters
for all possible orbit transfers is analytically impossible and
can be computationally expensive without good heuristic al-
gorithms. There is no guarantee that a single set of the Q-law
parameters is superior for all types of orbit transfers. It is also
not expected that one particular set is superior for all propel-
lant requirements and flight times of a specific orbit transfer.
In this paper, we demonstrate that a genetic algorithm and
a simulated-annealing-related algorithm efficiently optimize
the Q-law parameters, and thus improve the estimation of the
propellant-mass and flight-time requirements for various or-
bit transfers. The five orbit transfers considered are thosepre-
sented by Petropoulos [4], or slight variants thereof, and are
compared with optimal solutions from the literature, where
these are available.

2. Q-LAW

The Q-law was developed by Petropoulos [3] in order to pro-
vide good initial guesses for propellant-optimal low-thrust or-
bit transfers. The Q-law determines when and at what angles
to thrust based on the proximity quotient termedQ. The func-
tion Q judiciously quantifies the proximity of the osculating
orbit to the target orbit. In the Q-law, the central body is
modeled as a point mass, and no perturbing forces are con-



sidered. We summarize in the remainder of this section the
Q-law from Ref. [4].

The Q-law consists of two main control rules. 1) The Q-law
chooses the thrust angles which reduceQ most quickly at the
current instant. 2) The Q-law determines whether to thrust or
coast according to a given thrust effectivity thresholdηcut ∈
[0, 1] as follows:

thrust, if
minα,β Q̇

minα,β,θ Q̇
≥ ηcut (1)

coast, if
minα,β Q̇

minα,β,θ Q̇
< ηcut, (2)

whereQ̇ is the time rate of change ofQ, α andβ are the thrust
angles (more specifically, the azimuthal and elevation angles
of the thrust with the pole being given by the osculating or-
bital angular momentum), andθ is the true anomaly of the
osculating orbit.minα,β Q̇ is the minimum ofQ̇ overα and
β at a givenθ, whereasminα,β,θ Q̇ is the minimum ofQ̇ over
α, β, andθ. Thus,ηcut is a handle to control the minimum
tolerated effectivity of the thrust. In general, a largerηcut

leads to a smaller propellant mass used and a longer flight
time.

Orbit propagation is done by numerically integrating Gauss’s
form of the variational equations for the orbit elements [14]
using a 5th-6th-order Runge-Kutta-Fehlberg algorithm. At
each integration step, the Q-law provides an indication of
whether to apply thrust or not, and, if so, in which direction.
The thrust, when on, and the specific impulse are assumed
constant.

The proximity quotientQ, which serves as a candidate Lya-
punov function in the Q-law, is defined as follows:

Q = (1 + WP P )
∑

œ
WœSœ

[

d(œ, œT )

œ̇xx

]2

for œ= a, e, i, ω,Ω. (3)

The five orbital elements (œ) are the semimajor axis (a), ec-
centricity (e), inclination (i), argument of periapsis (ω), and
longitude of the ascending node (Ω); WP and theWœ are
scalar weights greater than or equal to zero; the subscriptT
denotes the target orbit element value (without subscript,the
osculating value is indicated);œ̇xx denotes the maximum over
thrust direction and over true anomaly on the osculating orbit
of the rate of change of the orbit element (due to thrust). The
analytical expressions foṙœxx are available in Ref. [3];P is a
penalty function;Sœis a scaling function; andd(œ, œT ) is a
distance function. The penalty function is used in the present
paper to enforce minimum-periapsis-radius constraints and
takes the form

P = exp

[

k

(

1 −
rp

rpmin

)]

(4)

wherek is a scalar,rp is the osculating periapsis radius, and
rpmin is near or equal to the lowest permissible value ofrp.

The scaling function is used primarily to ensure convergence
to the target orbit and takes the form

Sœ=
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r

for œ= a

1 for œ= e, i, ω, Ω

(5)

wherem, n, andr are scalars. The distance function is de-
fined as

d(œ, œT ) =

{

œ− œT for œ= a, e, i

cos−1 [cos(œ− œT )] for œ= ω, Ω
(6)

where the principal value, namely within[0, π], is used for
the arc cosine. The specific form of the distance function
for ω andΩ is used because it provides an angular measure
of the distance between two positions on a circle using the
“short way round” the circle, because it is differentiable with
respect toœ[except whend(œ, œT ) = π], and because the
sign of the derivative indicates whetherœ leads or lagsœT

based on the short way round.

As shown above, the Q-law specifies the general form of
the proximity quotientQ and the general rules for optimal
thrust angles and thrust-arc locations. However, to maintain
a certain degree of flexibility, the Q-law involves a set of
internal parameters or weights which can be set by a mis-
sion designer to specific values. The set is composed of
{ηcut, Wa, We, Wi, Wω , WΩ, WP , m, n, r, rpmin, k}. As dis-
cussed in Sec. 4, these parameters have nominal values that
should allow the Q-law to perform reasonably well for most
orbit transfers. The goal of the evolutionary algorithms isto
find Pareto-optimal parameter sets for any given orbit transfer
problem.

3. Q-LAW OPTIMIZATION WITH GA AND SA

Mathematically, the Q-law parameter optimization problem
is expressed as

minimize y = {tf (x), mp(x)} ∈ Y, (7)

where x = {Wa, We, Wi, Wω , WΩ, WP ,

m, n, r, rpmin, k, ηcut, θi} ∈ X. (8)

Here,x is the Q-law parameter vector,y the objective vector
given by the required flight time (tf ) and the required pro-
pellant mass (mp) for a given orbit transfer,X the decision
space, andY the objective space. We add one more parame-
ter to the decision space; the initial true anomalyθi, which is
not a Q-law parameterper se, but a mission-design parameter.
One decision vectorxi leads to one candidate trajectory with
a final fight time and a consumed propellant mass, that is, an
objective vectoryi. In the following paragraphs, we will de-
scribe how the optimization problem is solved with two evo-
lutionary algorithms: a genetic algorithm and a simulated-
annealing algorithm.



Genetic Algorithm

Genetic algorithms (GA), first introduced by John Holland
and his colleagues [5], are search algorithms based on the me-
chanics of natural selection and sexual reproduction. GAs are
theoretically and empirically proven to provide robust search
in complex spaces. Furthermore, they are not fundamentally
limited by restrictive assumptions about the search space such
as continuity and existence of derivatives.

The standard GA proceeds as follows. A possible solution
of a given problem is encoded as a finite string of symbols,
known as the genome. An initial population of the possible
solutions called individuals is generated at random or heuris-
tically. At every evolutionary step, known as a generation,the
individuals in the current population are decoded and evalu-
ated according to some predefined quality criterion, referred
to as the fitness. To form the next generation, parents are se-
lected according to their fitness. Many selection procedures
are currently in use, one of the simplest being Holland’s orig-
inal fitness-proportionate selection, where individuals are se-
lected with a probability proportional to their relative fitness.
This ensures that the expected number of times an individ-
ual is chosen is approximately proportional to its relativeper-
formance in the population. Thus, high-fitness individuals
stand a better chance of reproducing, while low-fitness ones
are more likely to disappear.

The parent selection process is followed by genetically-
inspired operators to form offsprings. The most well known
operators are crossover and mutation. Crossover is performed
with probabilitypcross between two selected parents, by ex-
changing parts of their genomes to form two offsprings; in its
simplest form, substrings are exchanged after a randomly se-
lected crossover point. This operator tends to enable the evo-
lutionary process to move toward “promising” regions of the
search space. The mutation operator is introduced to prevent
premature convergence to local optima by randomly sampling
new points in the search space with some probabilitypmut.
Genetic algorithms are stochastic iterative processes that are
not guaranteed to converge. The termination condition may
be specified as some fixed, maximal number of generations
or as the attainment of an acceptable fitness level.

The standard GA requires a ranking/evaluation scheme in
the process of fitness assignment, which depends on op-
timization problems. Optimizing the Q-law parameters is
a multi-objective optimization problem, because both pro-
pellant masses and flight times need to be minimized. In
such a problem, there may not exist one solution that is
best with respect to all objectives. Therefore, the goal of
the multi-objective optimization problem is to determine the
trade-off surface, which is a set of nondominated solution
points known as Pareto-optimal or non-inferior solutions.
A conventional way to solve multi-objective problems is
to transform the original problem in a single-objective one,
by weighting the objectives with a weight vector. How-
ever, this process tends to lead to a subgroup of Pareto-

optimal solutions that is sensitive to the weight vector used
in the weighting process. In contrast, the nondominated sort-
ing process equally encourages all nondominated solutions
to survive [12]. The nondominated sorting genetic algo-
rithm (NSGA) was shown to be superior [6] to other multi-
objective evolutionary algorithms such as the vector evalu-
ated genetic algorithm (VEGA) [7], the niched Pareto genetic
algorithm (NPGA) [8], and the multi-objective genetic algo-
rithm (MOGA) [9]. Hence, we apply NSGA to optimize the
Q-law parameters.

The nondominated sorting proceeds as follows. First, the
nondominated individuals in the current population are iden-
tified as described in the Appendix. The same fitness value is
assigned to all the individuals constituting the first nondom-
inated front. The individuals are then ignored temporarily,
and the rest of the population is processed in the same way
to identify a new set of nondominated individuals. A fitness
value that is smaller than the previous one is assigned to all
the individuals belonging to the second nondominated front.
This process continues until the whole population is classified
into nondominated fronts.

Simulated Annealing

Simulated annealing (SA) is a widely used and well-
established optimization technique especially for high-
dimensional configuration spaces [10][11]. The goal is to
minimize an energy functionE (in our case, the required
flight time and propellant mass), which is a function ofN
variables (in our case, the Q-law parameters), withN being
a large number. The minimization is performed by randomly
changing the value of one or more of theN variables and
reevaluating the energy functionE. Two cases can occur: 1)
the change in the variable values results in a new, lower en-
ergy function value; or 2) the energy function value is higher
or unchanged. In the first scenario the new set of variable
values is stored and the change accepted. In the second sce-
nario, the new set of variable values is only stored with a cer-
tain likelihood (Boltzmann probability, including an anneal-
ing temperature). This ensures that the overall optimization
algorithm will not be trapped in local minima too easily as is
the case with greedy downhill optimization. As the anneal-
ing temperature decreases in the course of the optimization
process, an energetically unfavorable step is less likely to be
accepted (cooling schedule). The procedure is repeated un-
til the annealing temperature has reached its end value or a
preset number of iterations has been exceeded.

We apply a derivative of the canonical SA algorithm to the
low-thrust-trajectory optimization problem, by replacing the
Boltzmann probability acceptance with an energy threshold
acceptance: each configuration with an energyE < Emin +
Ethreshold will be automatically accepted, withEthreshold os-
cillating between two preset boundaries (“simulated reheat-
ing and cooling”).



Table 1. Initial and final orbit elements, thrust characteristics,spacecraft initial masses, and central bodies associated with the
orbit transfers studied in this paper. The orbit elements are given by the semimajor axis (a), the eccentricity (e), inclination (i),

argument of the periapsis (ω), and longitude of the ascending node (Ω). The true anomaly (θ) is left free for both the initial
and final orbit.

Case Orbit a e i ω Ω Thrust Specific Initial Central
(km) (degree) (degree) (degree) (N) Impulse (s) Mass (kg) Body

A
Initial 7000.00 0.010 0.050 0.0 0.00
Target 42000.00 0.010 free free free

1 3100 300 Earth

B
Initial 24505.90 0.725 7.050 0.0 0.00
Target 42165.00 0.001 0.050 free free

0.350 2000 2000 Earth

C
Initial 9222.70 0.200 0.573 0.0 0.00
Target 30000.00 0.700 free free free

9.3 3100 300 Earth

D
Initial 944.64 0.015 90.060 156.9 -24.60
Target 401.72 0.012 90.010 free -40.73

0.0045 3045 950 Vesta

E
Initial 24505.90 0.725 0.060 180.0 180.00
Target 26500.00 0.700 116.000 270.0 180.00

2 2000 2000 Earth

4. ORBIT-TRANSFER RESULTS

The parameters of the Q-law are optimized by GA and SA
for five different types of orbit transfers. Table 1 lists theini-
tial and final orbit elements, thrust characteristics, spacecraft
initial mass, and central bodies associated with the five orbit
transfers termed case A, B, C, D, and E. These cases corre-
spond to those in [4], except that for case E the plane of the
initial orbit is changed by 0.12 degrees. As is customary with
the classical orbit elements, values of zero are not used for
the eccentricity and inclination on account of the singulari-
ties present in Gauss’s form of the variational equations. The
orbit transfers range from the simpler, where few elements
have target values, to the more complex, where not only do all
elements have target values, but also where temporary, large
sacrificial changes must be made in some elements to change
more effectively other elements, until all elements converge
on their target values. Recall that to effect an orbit transfer,
the Q-law not only provides thrust angles but also an indica-
tion of whether to thrust or coast. Thus, the Q-law can exam-
ine the trade-off between propellant mass and flight time: To
obtain short flight times, more propellant must be used, while
when longer flight times are allowed, the required propellant
mass is reduced. As the permitted flight time increases, even-
tually there are diminishing returns on the saved propellant
mass, and so the flight time will typically be capped at some
large-enough value for each of these transfers.

The Pareto fronts (in propellant mass and flight time) ob-
tained with the optimized Q-law are compared with those ob-
tained with the nominal (unoptimized) Q-control law. Fur-
thermore, for cases A, B, C, and D, we assess how well the
Pareto front of the optimized Q-law matches the performance
of individual optimal transfer trajectories reported in the liter-
ature, computed using optimal control techniques (i.e. with-

out the imposition of a feedback control law). Due to the
difficulty of the optimal control problem, there is a dearth
of optimal, many-revolution orbit transfers in the literature,
especially when coast arcs are involved or when the trans-
fer is complex. For each case we present the computation
time needed to generate the Pareto front, and, where possi-
ble, compare this to the times needed to obtain the optimal
solutions reported in the literature.

The nominal Q-law usesWœ= 1 for orbit elements with tar-
get values,Wœ= 0 for orbit elements without target values,
andm = 3, n = 4, r = 2 for the scaling function of the
semimajor axisa. The penalty function to enforce minimum-
periapsis-radius constraints is applied only for case D andE
orbit transfers. The penalty function of the nominal Q-law
usesWp = 1, k = 100, andrpmin = 300 km for case D and
rpmin = 6578 km for case E. The Pareto front of the nominal
Q-law is acquired by varying the thrust effectivity threshold
ηcut ∈ [0, 1] and the initial true anomalyθi ∈ [0, 2π].

The GA optimization uses the following GA parameters: the
population sizeNp = 1000 for case A, B, C andNp = 2000
for case D and E, the number of generationsNg = 100, the
population replacement ratepr = 0.1, the crossover prob-
ability pc = 0.8, the mutation probabilitypm = 0.3. The
relatively high mutation rate is chosen to preserve the diver-
sity of the population. Each Q-law parameter is represented
as a real-valued gene. The fitness of each individual is as-
signed according to the nondominated sorting as described in
Sec. 3. Possible parents are selected by tournament (i.e., ran-
domly pick two individuals and choose the one that is better
fitted). The crossover is performed by choosing one point in
the gene string at which the two strings are crossed. The mu-
tation is performed by randomly choosing a gene in the string
according to the mutation probability and resetting the gene



randomly within a given range.

The SA optimization uses as fitness function the sum of the
consumed propellant mass and the flight time. The design of
this fitness function results in an approximately equal opti-
mization of both the consumed propellant mass and the flight
time. Thus, a complete Pareto front cannot be expected from
this fitness function. By replacing the flight time in the fitness
function with the relative difference between the current flight
time and a specified flight time and by varying the specified
flight time, one can obtain a complete Pareto front. The SA
optimization runs on a single processor, but it can be trivially
parallelized by deploying N specified flight times on a cluster
of N processors.

Case A Orbit Transfer

Case A is a simple coplanar, circle-to-circle orbit transfer
from low Earth orbit to geostationary orbit. No periapsis con-
straint is imposed during the transfer, as the natural dynam-
ics does not decrease the periapsis altitude. The maximum-
permitted flight time is 500 days. Figure 1 shows the Pareto
front obtained with the nominal Q-law and the optimized Q-
law. Note that each solution in the Pareto front for the optimal
Q-law is obtained with a different set of Q-law parameters.
As shown in Fig. 1, the GA Pareto front dominates the Pareto
front given by the nominal Q-law.

The Pareto-optimal solutions found by GA and SA are com-
pared with two analytical solutions that approximately bound
the problem: The Edelbaum transfer and the Hohmann trans-
fer. The Edelbaum transfer provides an approximate lower
limit for the required flight time [13], while the Hohmann
transfer [14] sets an approximate lower limit for the required
propellant mass. The Edelbaum transfer is a continuous-
thrust, minimum-time transfer based on orbit averaging. The
Hohmann transfer utilizes two thrust impulses, that is, twoin-
stantaneous large changes in velocity each without change in
position. Applying thrust impulsively is much more efficient
than applying it continuously over an orbit, and so the propel-
lant required for the Hohmann transfer (assuming the thrust
can be arbitrarily large) is much less than that needed for con-
tinuous thrust. In the case of low thrust, these large velocity
changes can be accumulated gradually by utilizing a series of
small thrust arcs. As these thrust arcs become infinitesimalin
size, the propellant requirement will converge to that needed
for the Hohmann transfer.

When the Q-law optimized with GA is used, the flight-time-
optimal solution is about 0.04 days away from the lower limit
of the flight time (14.42 days), and the propellant-optimal so-
lution is about 0.14 kg away from the lower limit of the pro-
pellant mass (34.97 kg). In contrast, the flight-time optimal
solution found by the nominal Q-law is 0.11 days away, and
the propellant-optimal solution is 0.82 kg away. This compar-
ison clearly shows that the optimization of the Q-law with GA
essentially matches the theoretical flight-time and propellant
bounds, having improved the Pareto front of the nominal Q-

law by about 0.6% in minimum flight time and about 1.9%
in minimum propellant mass. The optimized-Q-law trans-
fer with the lowest propellant mass has a flight time of about
230 days, even though the maximum-permitted flight time is
500 days. The distance from the flight-time cap is due to the
fact that the propellant mass is already very close to its min-
imum value, and that beyond about 250 days, the flight time
becomes very sensitive to the value ofηcut, making it difficult
to populate the Pareto front beyond this flight time.

One of the limitations of the nominal Q-law for this trans-
fer is that the nominal Q-law excludes a subgroup of Pareto-
optimal solutions. As shown in Fig. 1, the nominal Q-law
provides two families of Pareto-optimal solutions: one for
short flight times (14 < tf < 17) and the other one for long
flight times(tf > 140). No solutions are found for the in-
termediate flight times (17 < tf < 140). In contrast, the
GA-optimized Q-laws lead to Pareto-optimal solutions in a
wide range of flight times without any significant gap. This
indicates that some Q-law parameters besidesηcut strongly
affect the trajectories to be taken.

To show which parameters are important in determining the
trajectory pattern, we investigate a correlation between the
optimal parameters and the flight time (or the propellant
mass). While other Q-law parameters do not show much cor-
relation, the optimal set{Wa, We, ηcut} show a strong cor-
relation with the flight time, as shown in Figure 2. For ex-
ample, the trajectory with flight time 50 days can be found
only with Wa = 55%, We = 45% andηcut = 0.84, while
the rest of Q-law parameters can vary widely yet yield com-
parable performance. This sensitivity/correlation analysis be-
tween the Q-law parameters and the resulting trajectory sug-
gests that the Q-law can be effectively optimized by varying
only {Wa, We, ηcut}.

We present examples of the three families of trajecto-
ries in the Pareto front: for flight-time optimal solutions,
propellant-optimal solutions, and intermediate-flight-time so-
lutions found by the optimized Q-law. The flight-time-
optimal trajectory is roughly a circular spiral, increasing the
semimajor axis while maintaining the eccentricity close to
zero, as shown in Figs. 3 and 6. The propellant-optimal
trajectory takes a quite different form, maintaining the same
periapsis until the apoapsis becomes super-synchronous, and
then increasing the periapsis radius to near the target value, fi-
nally driving both apoapsis and periapsis radii to their targets,
as shown in Figs. 4 and 6. As expected, the intermediate-
flight-time trajectory, shown in Figs. 5 and 6, is a hybrid
between the flight-time optimal and the propellant-optimal
trajectories, increasing the periapsis and apoapsis simultane-
ously. The trajectory initially increases both the eccentric-
ity and the semimajor axis, and later reduces the eccentricity
while continuing to increase the semimajor axis.
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Figure 3. Case A: flight-time-optimal
trajectory with flight time 14.5 days.
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Figure 4. Case A: propellant-optimal
trajectory with flight time 230 days.
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Figure 5. Case A: intermediate-flight-
time trajectory with flight time 30 days.
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Figure 8. Case B: Optimal Q-law parameters found by GA
with respect to flight time. OptimalWa, We, Wi are normal-
ized to make their sum to be 100%.

Case B Orbit Transfer

Case B is a transfer from a slightly-inclined geostationary
transfer orbit to geostationary orbit. The maximum-permitted
flight time is 1500 days. Figure 7 shows the trade-off between
propellant-mass and flight-time for this transfer. In compari-
son with the Pareto front generated with the nominal Q-law,
the improvement of the Pareto front with the optimized Q-law
is dramatic. A propellant savings of about 5-15% is achieved
with the optimized Q-law. To verify the quality of the im-
proved Pareto front, we compare it with the two optimal tra-
jectories found by Geffroy and Epenoy using an orbit averag-
ing technique [15]. The inset of Fig. 7 shows that our Pareto-
optimal solutions are as good as the solutions found by Gef-
froy and Epenoy.

An analysis of the correlation between the optimal Q-law
parameters and the flight time is shown in Figure 8. The
dense populations of optimalWa around 10%, optimalWe

around 20%, andWi around 70% show that the nominal Q-
law (Wa = We = Wi) is not an optimal choice. As expected,
the thrust effectivity thresholdηcut is the important parameter
to control the flight time. Other Q-law parameters (m, n, r)
and the initial true anomaly (θi) show a weak correlation with
the flight time, indicating that these parameters are not as crit-
ical asWa, We, Wi, andηcut in the Q-law optimization.

Case C Orbit Transfer

Case C is a transfer from a low-eccentricity elliptic orbit
to a coplanar, high-eccentricity, larger elliptic orbit, with a
maximum-permitted flight time of 20 days. Figure 9 shows
the trade-off between propellant mass and flight time for
this transfer. The Pareto front for the nominal Q-law is ob-

tained by varying the thrust effectivity thresholdηcut ∈ [0, 1]
and the initial true anomalyθi ∈ [0, 2π]. The Pareto front
for the GA optimized Q-law is generated by optimizing
{Wa, We, m, n, r, ηcut, θi}. The GA optimized Q-law pro-
vides a better estimation of the Pareto front than the nom-
inal Q-law particularly for short flight times. Several so-
lutions found with the optimization tool Mystic are plotted
for comparison. Mystic uses the static/dynamic control algo-
rithm [16] [17]. The comparison shows that the Pareto front
generated by the optimized Q-law is as good as the Mystic
solutions.

The optimal Q-law parameters found by GA are plotted with
respect to flight time in Fig. 10. The optimalWa, We and
ηcut are strongly correlated to the flight time, while other Q-
law parameters show a weak correlation. In general, flight-
time-optimal solutions haveWe/Wa > 1, while propellant-
optimal solutions haveWe/Wa < 1. This means that
the flight-time-optimal solutions emphasize the eccentricity
target while the propellant-optimal solutions emphasize the
semi-major axis target.

Case D Orbit Transfer

Case D is roughly a circle-to-circle orbit transfer around the
asteroid Vesta, involving a small plane change. The flight
time is capped at 300 days. Figure 11 shows the trade-
off between propellant mass and flight time for this trans-
fer. The Pareto front of the nominal Q-law is obtained by
varying the thrust effectivity thresholdηcut ∈ [0, 1] and the
initial true anomalyθi ∈ [0, 2π]. The Pareto fronts of the
GA optimized Q-law are generated in three different ways:
the first Pareto front (GA Q-law I) is obtained by optimizing
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Figure 9. Case C: Trade-off between propellant mass and
flight time. The Pareto fronts generated by the nominal Q-
law and the optimized Q-law are plotted in comparison with
several Pareto-optimal solutions found with the optimization
tool Mystic.
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Figure 10. Case C: Optimal Q-law parameters found by
GA with respect to flight time. A strong correlation between
{Wa, We, ηcut} and the flight time is observed, while other
Q-law parameters show a weak correlation.

{Wa, We, Wi, WΩ, ηcut, θi}, the second Pareto front (GA Q-
law II) by optimizing {Wa, We, Wi, WΩ, ηcut, θi, m, n, r},
and the third Pareto front (GA Q-law III) by optimizing
{Wa, We, Wi, ηcut, θi, m, n, r, WP , rpmin, k}. In compari-
son with the nominal Q-law, the GA optimized Q-law im-
proves an estimation of the Pareto front for all the flight times
considered. The GA optimized Q-law leads to a propellant
mass savings as large as 16%. More promisingly, the Pareto-
optimal solutions found with the optimized Q-law are as good
as the solution found by Whiffen using the static/dynamic
control algorithms coded in Mystic [17] [18].

Among the three GA optimization schemes described above,
GA Q-law II and GA Q-law III outperform GA Q-law I but
the difference between GA Q-law II and GA Q-law III is
insignificant. This result indicates that the trajectory does
not depend strongly on{WP , rpmin, k} (the parameters of
the penalty function for the minimum periapsis constraint)
and thus an accurate Pareto front can be obtained by opti-
mizing only{Wa, We, Wi, ηcut, θi, m, n, r}. The difference
between the Pareto fronts generated by GA Q-law I and GA
Q-law II (or III) becomes smaller as the flight time becomes
longer. This sheds some light on the effect of the Q-law pa-
rameters{m, n, r} on the Q-law performance. The parame-
ters{m, n, r} are introduced for the scaling function in the
semimajor axis to ensure the convergence of transfers which
involve an increase in the semimajor axis. However, the semi-
major axis steadily decreases in this orbit transfer, suggesting
that the scaling function is not needed. Therefore, it is prefer-
able to select a parameter set{m, n, r} that yields the small-
est possible modification to the distance function.

The optimal Q-law parameters found with GA are plot-

ted with respect to the flight time in Figure 12. Op-
timal Wa, We, Wi, WΩ are normalized to make the sum
to be 100%. The Q-law optimization shows a greater
correlation for{Wa, We, Wi, WΩ, ηcut, θi, m, n, r} than for
{Wp, rpmin, k}. This explains the similarity between the
Pareto front generated with GA Q-law II and the Pareto front
generated by GA Q-law III. As in other transfers, this transfer
shows a strong correlation betweenηcut and the flight time.
However, the correlation does not follow the monotonous
trend that a largerηcut leads to a longer flight time. The opti-
mal ηcut shows a discontinuity around a flight time 60 days.
The discontinuity also appears in other optimal Q-law param-
eters such asWa, We, WΩ. This indicates that the pattern of
the trajectory changes around this flight time.

To understand the cause of the discontinuity of the optimal
Q-law parameters, we examine the trajectory for a flight time
just below the discontinuity point (T1) and that for a flight
time just above the discontinuity point (T2). Figure 13 shows
orbit elements as a function of time during the orbit trans-
fer. The two trajectories show a significant difference in the
time history of the eccentricity, while other orbit elements
(a, i, ω, Ω) show a small difference. T1 keeps the eccentricity
close to zero all time, but T2 shows a large increase and de-
crease of the eccentricity during the orbit transfer. This trend
is similar to that observed in Case A, where the circular spiral
trajectory (Edelbaum-type transfer) is flight-time optimal and
the elliptic trajectory (Hohmann-type transfer) is propellant
optimal. The two types of trajectories can be obtained with
the Q-law by either emphasizing the eccentricity target or not.
This result is also observed in the distribution of the optimal
We in Figure 12. The optimalWe is greater for short-flight-
time solutions than for long-flight-time solutions.
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Figure 11. Case D: Trade-off between propel-
lant mass and flight time. The Pareto fronts are
obtained with the nominal Q-law and with the Q-
law optimized with GA. A flight-time optimal so-
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A Pareto-optimal solution found by Mystic is also
plotted for comparison.
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Figure 12. Case D: Optimal Q-law parameters found with GA with
respect to the flight time. The overall distribution of the optimal param-
eters shows that the Q-law performance is more sensitive to the choice
of {Wa, We, Wi, WΩ, ηcut, θi, m, n, r} than{WP , rpmin, k}.
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Case E Orbit Transfer

Case E is a transfer from a geostationary transfer or-
bit to a retrograde, Molniya-type orbit, involving a large
plane change. The maximum-permitted flight time is
300 days. Figure 14 shows the trade-off between propel-
lant mass and flight time for this transfer. The Pareto front
for the nominal Q-law is obtained with varyingηcut ∈
[0, 1] and the initial true anomalyθi ∈ [0, 2π]. Three
Pareto fronts are generated with GA optimization as fol-
lows: the first Pareto front (GA-Q-law I) by optimizing
{Wa, We, Wi, Wω, WΩ}. the second Pareto front (GA Q-law
II) by optimizing {Wa, We, Wi, Wω, WΩ, m, n, r, ηcut, θi},
and the third Pareto front (GA Q-law III) by optimizing
{Wa, We, Wi, Wω, WΩ, m, n, r, ηcut, θi, WP , rpmin, k}. The
GA optimized Q-law provides a better estimation of the
Pareto front than the nominal Q-law for all the flight times
considered. A propellant mass savings as large as 30% is
obtained with the GA optimized Q-law. Like Case D, GA
Q-law II and GA Q-law III outperform GA Q-law I in this
case, while the difference between GA Q-law II and III is in-
significant. This result reflects the degree of influence of each
Q-law parameter on the Q-law performance. The difference
between GA Q-law I and GA Q-law II (or III) becomes larger
as the flight time increases in contrast to Case D.

The optimal Q-law parameters found with GA are plotted
with respect to the flight time in Figure 15. The overall distri-
bution of the optimal Q-law parameters shows the greater sen-
sitivity of the Q-law performance to{Wa, We, Wi, WΩ, ηcut}
than to{m, n, r, Wp, rpmin, k}. The optimalηcut shows a
strong correlation with flight time as was found for other
transfers. A strong preference for the relative size hierarchy
Wi > WΩ > Wa > Wω > We is observed for all flight
times.

Case E specifies changes in all orbit elements, making it
the most complicated transfer among the five transfers stud-
ied here. We examine how the change of each orbit ele-
ment interacts with other orbit-element changes. Figure 16
shows the time history of each orbit element for four differ-
ent Pareto-optimal trajectories found by GA Q-law III. For
the all four trajectories, the plane changes (i.e.i, ω, Ω) occur
when the semimajor axis nearly reaches the maximum values,
and the increase of the semimajor axis is accompanied by an
increase of the eccentricity. This behavior stems from the
orbit-transfer energetics, in which the larger apoapsis radius
(i.e. larger semimajor axis and larger eccentricity) reduces the
cost of the plane change in terms of propellant consumption.

Figure 16 also unveils a general trend in orbit-element
changes with respect to the flight time. The trajectory with
a longer flight time involves a larger change of the semima-
jor axis and a later start of the plane change. For example,
the shortest-flight-time trajectory (the solid line) exhibits an
early start of the plane change as the semimajor axis peaks
at 50,000 km. In contrast, the longest-flight-time trajectory
(the line with circles) shows almost no plane change until the

Table 2. Computation times required to obtain a Pareto
front with the Q-law optimized with GA and SA for each
orbit transfer. SA computation was performed in a single
processor, while GA computation was performed on ten

processors in parallel and thus required wall-clock time that
is one tenth the listed computation time.

Orbit Transfer Computation Time (minutes)
Case GA SA

A 705 311
B 800 1351
C 57 2656
D 1548 4133
E 2480 2278

semimajor axis reaches its maximum 100,000 km. The dif-
ference is directly related to the orbit-transfer energetics, in
which the plane change with a larger apoapsis radius is pro-
pellant efficient. The longer flight-time trajectory takes better
advantage of the energetics. The top panel of Fig. 16 illus-
trates the time history of propellant usage during the trans-
fer. The shortest-flight-time trajectory uses propellant with
an almost constant rate. The longer-flight-time trajectories
use propellant with a lower rate during the first stage of the
semimajor-axis increase followed by a higher rate of propel-
lant consumption in the second stage of the plane change.

Computational Requirement

The computation time required to obtain the Pareto front for
each orbit transfer is listed in Table 2. Case C requires a rela-
tively short computation time because the evaluation of each
Q-law takes less time due to the short flight time in this or-
bit transfer. Beside Case C, the required computation time
is between 700 to 2500 minutes. For Case A, B, and C, the
GA computation evaluates 10,000 sets of Q-law parameters,
while for Case D and E it evaluates 20,000 sets of Q-law pa-
rameters. Therefore, the time to evaluate one set of Q-law
parameters (equivalently to obtain a candidate trajectoryand
to assign its fitness) is only about 0.1 minute on average.

In addition to the efficient evaluation of candidate Q-
laws/trajectories, GA and SA are amenable to a parallel
computing implementation thanks to the independent eval-
uation of each candidate Q-law/trajectory in the popula-
tion/ensemble. The parallel computation significantly re-
duces the wall-clock time for a given computational load. For
this work, the GA computation was performed on 10 proces-
sors in parallel, thus requiring a wall-clock time that is one
tenth of the computation time listed in Table 2. It is the short
wall-clock time (70 – 250 minutes ) that makes our optimiza-
tion method attractive as a guiding tool for the early stage
of mission design where many possible scenarios need to be
evaluated. It is important to note that our method produces a
Pareto front (i.e., a group of Pareto-optimal solutions) within
a few hours, while other optimization algorithms tend to re-
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other Q-law parameters show a weak correlation. A strong preference for the
relative size hierarchyWi > WΩ > Wω > We is observed for all flight times.

0.0

0.4

0.8

1.2

a
  (

10
5 km

)

0.4

0.6

0.8

1.0

e

0

50

100

150

 i 
 (

de
g.

)

150

200

250

300

ω
 (d

eg
.)

0 100 200 300 400 500
Time (days)

170

180

190

Ω
 (d

eg
.)

0

200

400

600

M
p (

kg
)

Figure 16. Case E: Consumed propellant mass and orbit elements as a function of time for four Pareto-optimal trajectories
among the solutions found by GA Q-law III. The solid line is the trajectory with flight time 60 days, the dashed line is the
trajectory with flight time 156 days, the line with x symbols is the trajectory with flight time 275 days, and the line with circles
is the trajectory with flight time 482 days. As a general pattern, the trajectory with a longer flight time involves a largerchange
of the semimajor axis (a) and a later change of the inclination (i) and the argument of the periapsis (ω).



quire a similar amount of computational time as well as some
user interaction to acquire just a single Pareto-optimal tra-
jectory: The Mystic solutions of Case C each typically took
between 6 and 24 hours to run (although one took about a
week), and the Mystic solution of Case D took about a half
day [4] [17].

5. CONCLUSIONS

For the design and optimization of trajectories powered
by low-thrust propulsion, we have developed an effica-
cious and efficient method to obtain approximate propellant
and flight-time requirements and Pareto-optimal trajectories.
The method involves a two-level optimization process: i)
Lyapunov-optimal thrust angles and locations are determined
with the Q-law, ii) the Q-law is optimized with two evo-
lutionary algorithms: a genetic algorithm and a simulated-
annealing-related algorithm. We have applied our method to
four different types of orbit transfers around the Earth andone
orbit transfer around the asteroid Vesta. The optimizationof
the Q-law yields the greatest benefit in the case of the most
complex of the five orbit transfers considered, although less
complex cases also benefit. The resulting Pareto front with
the optimized Q-law shows a propellant savings as large as
30% in comparison with the nominal Q-law, and the Pareto
front contains the optimal solutions found by other trajectory
optimization algorithms.

In optimization problems, there is always a trade-off between
the optimization quality and the computational requirement.
Most of the efficient/fast optimization tools tend to yield low-
quality solutions while high-quality optimization tools tend
to require large computational resources. Both high qual-
ity of optimization and low computational requirement are
needed in the early stages of mission design, where many
possible scenarios are considered. Our method offers both
the high optimization quality and the high computational ef-
ficiency. The trajectory quality of our method is shown to be
as good as that of other state-of-the-art optimization tools.
Our method yields not only a few Pareto-optimal trajecto-
ries but also an accurate Pareto front for a given orbit transfer
within a few hours of computation time. The computational
efficiency arises from both the efficiency of the Q-law in ob-
taining a candidate trajectory and the natural parallelismof
GA/SA computation in evaluating a population/ensemble of
candidate Q-laws/trajectories.
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7. APPENDIX

Mathematically, a multi-objective optimization problem is
expressed as

minimize y = {y1(x), · · · , yM (x)} ∈ Y, (A.1)

where x = {x1, · · · , xN} ∈ X, (A.2)

andx is theN dimensional decision vector,y theM dimen-
sional objective vector,X the decision space, andY the ob-
jective space.

Within the multi-objective optimized problem, a nondomi-
nated solution is the solution that is not dominated by any
other feasible solutions. The condition for the solutionxa to
dominatexb is given by [6] [12],

∀ i ∈ {1, · · · , M}, yi(x
a) ≤ yi(x

b)

∧ ∃ i ∈ {1, · · · , M}, yi(x
a) < yi(x

b). (A.3)

The second condition ensures thaty(xa) 6= y(xb).
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