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Boundary conditions for the electronic structure of finite-extent embedded
semiconductor nanostructures
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The modeling of finite-extent semiconductor nanostructures that are embedded in a host material requires a
proper boundary treatment for a finite simulation domain. For the study of a self-assembled InAs dot embedded
in GaAs, three kinds of boundary conditions are examined within the empirical tight-binding model:~i! the
periodic boundary condition,~ii ! raising the orbital energies of surface atoms, and~iii ! raising the energies of
dangling bonds at the surface. The periodic boundary condition requires a smooth boundary and consequently
a larger GaAs buffer than the two nonperiodic boundary conditions. Between the nonperiodic conditions, the
dangling-bond energy shift is more numerically efficient than the orbital-energy shift, in terms of the elimina-
tion of nonphysical surface states in the energy region of interest for interior states. A dangling-bond energy
shift larger than 5 eV efficiently eliminates all of the surface states and leads to interior states that are highly
insensitive to the choice of the energy shift.

DOI: 10.1103/PhysRevB.69.045316 PACS number~s!: 73.22.2f
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I. INTRODUCTION

The representation of a semiconductor heterostructure
an atomistic model ultimately requires the introduction o
limited simulation domain, of which the surface needs to
treated with a specific boundary condition~BC!. If the sur-
face of the simulation domain is selected far enough from
central feature of interest, periodic BC’s can be used and
simulation domain is effectively repeated infinitely. How
ever, for electronic devices with nonperiodic external pot
tials or for structures with irregular surfaces, the perio
BC’s are not a natural choice. If the simulation-domain s
face is within the material bulk region, a truly open BC
perfectly absorbing BC would be the best solution, as it d
not introduce an artificial periodicity and would enable t
simulation of carrier injection or transport.1,2 However such
a BC requires the inversion of a full matrix that is of th
order of the number of atoms on the open surface. Theref
the open BC can only be applied to relatively small op
surfaces.

Another choice in representing a finite simulation dom
is the abrupt termination of the simulation domain with
hard-wall BC. Such abrupt termination in the atomistic ba
set results in the creation of dangling bonds. The dang
bonds will form surface states~of the order of the number o
exposed atoms! that typically cover a broad energy range a
often litter the central energy region of the fundamental ba
gap. The separation of the artificially introduced surfa
states from the desired centrally confined states is num
cally expensive, as the computation time and requi
memory increase with the number of computed eigenva
and eigenvectors and as the separation would demand
computation of eigenvectors. Many relevant quantum
calculations only require the computation of eigenvalue3

while the computation of the eigenvectors at least doub
the computation time and the required memory scales w
the number of computed eigenvectors. To address the p
lem of artificially introduced surface states, this paper exa
0163-1829/2004/69~4!/045316~8!/$22.50 69 0453
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ines two modified hard-wall BC’s and discusses their me
relative to each other and to the more standard periodic

Typical quantum dot and heterostructure devices
based on the concept of confining electron and hole st
into a spatial domain. The confinement is typically achiev
by surrounding a core semiconductor by a buffer semic
ductor of larger band gap. The practical question now ari
of how large of a buffer region must be included in th
explicit simulation domain. In systems of strain-induced se
assembled quantum dots the strain fields may extend
from the central device region for tens of nanometers,4 while
the quantum states of interest extend only over a few ato
monolayers into the buffer. The lattice distortion due to str
must therefore be computed in a large simulation doma
while the desired quantum confined states may only nee
be computed in a relatively small simulation domain. T
hard-wall BC’s considered in this paper enable the strain
electronic-structure simulations to be performed with tw
different simulation domains. This paper demonstrates
the inclusion of a realistically large buffer is essential
capture the effects of strain, while the subsequent electro
structure calculation can then be performed with a sign
cantly smaller, strain distorted simulation domain which
solves the confined quantum states of interest. The reduc
of the simulation domain for the electronic-structure calcu
tion substantially lessens the computational requireme
since the dimension of the Hamiltonian grows linearly w
the number of atoms included in the model.

The proper BC for a reduced buffer should efficien
eliminate all nonphysical surface states and at the same
should minimally affect physical interior states. In previo
work, two types of BC’s have been considered for the ato
istic modeling of embedded nanostructures.4,5 In the first BC,
the orbital energy of the surface atoms is raised by a spe
amount.4 The value of energy shift is determined empirica
by requiring that no state resides in the energy gap.4 We will
show that this method is unpredictable and numerically l
efficient than the BC proposed in this work. The second
found in the literature is the periodic BC with a truncat
©2004 The American Physical Society16-1
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buffer.5 We also find this method inefficient in eliminatin
spurious states formed in the energy-gap region as it requ
either a relatively larger buffer or an unphysical, empiric
adjustment to atomic positions near the boundary for a sm
buffer. In the present work, we propose a BC that is to ra
the energy of dangling bonds. We compare the proposed
with the two previously employed BC’s and demonstrate
efficiency and reliability of the new BC. The three bounda
conditions are applied to the study of the electronic struct
of a self-assembled InAs quantum dot embedded in a G
buffer in the framework of the empirical tight-bindin
model. The efficiency and reliability of the BC’s are me
sured by the elimination of nonphysical surface states,
number of iterations in the Lanczos eigenvalue solver,
the reduction of the buffer size required for interior-sta
energy convergence.

II. BOUNDARY CONDITIONS

The first boundary condition~BC I! considered is to raise
the orbital energies of surface atoms. This method disc
ages electrons from populating the surface-atom orbit
However, this treatment does not differentiate among det
of the surface atoms such as the number and directio
their dangling bonds. As a refinement, a second bound
condition ~BC II! is introduced: raising the energy of th
dangling bond for the surface atoms. Within this method,
connected-bond energy of the surface atoms is kept
changed and hence there is no extra penalty for electron
occupy the connected bonds of surface atoms. Since the
tivation of the surface energy shift in BC I and II is to r
move nonphysical surface states from the energy regio
interest, lowering the surface energies will have the sa
outcome as raising the surface energies.

Both BC I and II are closed boundary conditions as o
posed to a periodic condition that is the third boundary c
dition ~BC III ! considered in this work. In principle, thi
boundary condition is applicable only if the system is co
posed of a unit cell periodically repeated. However, the
riodic boundary condition is widely used not only for pe
odic systems but also for systems with nonperio
perturbations such as alloy disorder, defects, impurities,
even surfaces. For systems with such nonperiodic pertu
tions, the unit cell known as the supercell should be la
enough to accommodate the nonperiodic perturbations
nanostructure modeling, the supercell can be as large a
whole size of the nanostructures. For instance, the nanos
ture composed of a quantum dot and a surrounding bu
has no inherent periodicity, with a long-ranged strain fie
that extends up to tens of nanometers.4 The periodic bound-
ary condition is therefore examined for its appropriaten
and efficiency in modeling these nanostructures.

These three boundary conditions are implemented in
framework of the orthogonal nearest-neighbor tight-bind
model. In this model, the effective Hamiltonian is express
as the sum of the couplings between atomic basis orb
u i ,g&:
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egu i ,g&^ i ,gu1 (
iÞ i 8gg8

t i i 8gg8u i ,g&^ i 8,g8u, ~1!

where indicesi and g denote an atomic site and an orbit
type. Parametere represents the energy of the basis orbit
and t accounts for the coupling between basis orbitals c
tered at nearest-neighbor atomic sites.

In BC I, the Hamiltonian block matrix for a surface ato
with basis set$us&,upx&,upy&,upz&% is given by

F es1ds 0 0 0

0 ep1dp 0 0

0 0 ep1dp 0

0 0 0 ep1dp

G , ~2!

wheredg is the energy shift for the orbitalg on a surface
atom. A different energy shift can be chosen for each ba
orbital.

For BC II, the basis set of the Hamiltonian is first chang
from set $us&,upx&,upy&,upz&% to the set ofsp3 hybridized
orbitals that are aligned along the bond directions. In
zinc-blende structure, thesp3 hybridized orbitals are given
by6

uspa
3&5 1

2 ~ us&1upx&1upy&1upz&),

uspb
3&5 1

2 ~ us&1upx&2upy&2upz&),

uspc
3&5 1

2 ~ us&2upx&1upy&2upz&),

uspd
3&5 1

2 ~ us&2upx&2upy&1upz&). ~3!

The energy of a hybridized orbital is raised bydsp3 if the
orbital is along the dangling-bond direction. For instance
the surface atom has dangling bonds alonguspa

3& and uspc
3&

directions, the Hamiltonian block matrix for the surface ato
in the basis set$uspa

3&,uspb
3&,uspc

3&,uspd
3&% is given by

F a1dsp3 b b b

b a b b

b b a1dsp3 b

b b b a

G , ~4!

wherea5es/413ep/4 andb5es/42ep/4.
Finally, the Hamiltonian is transformed back into th

original basis set of$us&,upx&,upy&,upz&%. The final Hamil-
tonian block matrix for the surface atom becomes
6-2
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3
es1

dsp3

2
0

dsp3

2
0

0 ep1
dsp3

2
0

dsp3

2

dsp3

2
0 ep1

dsp3

2
0

0
dsp3

2
0 ep1

dsp3

2

4 . ~5!

In comparison with Eq.~2!, this block matrix contains
nonzero off-diagonal elements. Furthermore, the shift of
diagonal element is proportional to the number of dangl
bonds. If the surface atom hasn dangling bonds, the energ
shift of the diagonal elements is given byndsp3/4. This
shows that BC II distinguishes among surface atoms wit
different number of dangling bonds. It is important to no
that BC II becomes identical to BC I when the energies of
the four sp3 hybridized orbitals are raised by the sam
amount. Therefore, BC I can be interpreted as the bound
condition that truncates the dangling bonds as well as
bonds connected to interior atoms.

To some degree, BC II mimics the physical passivation
dangling bonds with other atoms such as hydrogen and o
gen. Experimentally, silicon surfaces are usually passiva
by hydrogen to improve the conductivity. The hydrog
forms bonding and antibonding states with the dangl
bonds of Si at the surface. For example, the energies of
bonding and antibonding states of SiH4 are about 18 eV and
5 eV below the valence-band edge of bulk Si, respective7

Therefore, hydrogen passivation efficiently removes surf
states localized in dangling bonds. In connection with t
mechanism, BC II can be interpreted as the approximate
mation of the bonding and antibonding states between a
gling bond and vacuum at an energy determined bydsp3.8

Although BC I and II can be also applied to excited o
bitals such asd ands* , it is unnecessary to shift the energi
of the excited orbitals for surface atoms. The atomic energ
of the excited orbitals~typically 10–20 eV! are larger than
the energy gap, which is typically 0–5 eV.9 Furthermore, the
bonding states between the excited orbital and thes/p orbital
are shifted up by the energy shift of thes/p orbitals. There-
fore, the unmodified excited orbitals of surface atoms do
lead to surface states in the middle of the energy gap.

Implementing BC I and II requires a proper choice for t
energy shift of the surface atoms. The energy shift should
high enough to discourage electrons from occupying the
face atom orbitals and consequently to eliminate all n
physical surface states in the middle of the gap. The diago
elements of the tight-binding Hamiltonian give a guide to t
required energy shift. The diagonal elements range from
eV to 20 eV. The sensitivity of the electronic structure
different energy shiftsds , dp , anddsp3 is discussed in Sec
IV D.

Finally for BC III ~the periodic boundary condition!, ev-
ery surface atom is connected with another surface atom
the opposite side of the supercell. Consequently, the coup
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between surface atoms from the two sides is added to
original Hamiltonian:

Hperiodic5H01 (
^ jk&gg8

t jkgg8u j ,g&^k,g8u, ~6!

where^ jk& denotes all the new pairs of neighbors due to
periodic boundary condition. The diagonal block matrix
the Hamiltonian for surface atoms is unchanged in the p
odic boundary condition as opposed to BC I and II.

III. NANOSTRUCTURE MODELING

The three boundary conditions are applied to the study
the electronic structure of a self-assembled InAs quantum
embedded in a GaAs buffer. The modeled dot is lens sha
with diameter 15 nm and height 6 nm, similar to experime
tally available dots.10,11 The appropriate size for the GaA
buffer depends on the type of calculation. For strain-pro
calculations, the buffer thickness should be at least as la
as the dot size since the strain field is long ranged, while
electronic-structure calculations the buffer thickness can
smaller than the dot size because bound electron state
effectively confined inside the dot.4 In this work, a 15 nm
thick buffer is used for the strain-profile calculation, and
reduced buffer with thickness 1–5 nm is used for t
electronic-structure calculation with the atomic positio
given by the larger strain calculation. The equilibrium atom
positions are calculated by minimizing the strain energy
ing an atomistic valence-force-field model.3,12,13The neces-
sity of a large buffer size for the strain calculation and t
long-range effect of the strain on the electronic structure
discussed in Sec. IV A. Under the saturated strain pro
obtained with a sufficiently large buffer, the quantitative e
fect of the reduced buffer size on the electronic structure
examined in Sec. IV E.

The tight-binding Hamiltonian for the InAs dot and th
GaAs buffer is constructed based on atomicsp3d5s* orbit-
als. The Hamiltonian matrix elements are obtained by fitt
to experimental bulk band-structure parameters with a
netic optimization algorithm.3,14 To take into account the ef
fect of the displacements of atoms from the unstrained c
tal positions, the atomic energies~the diagonal elements o
the Hamiltonian! are adjusted by a linear correction with
the Löwdin orthogonalization procedure.14,15 The coupling
parameters between nearest-neighbor orbitals~the off-
diagonal elements of the Hamiltonian! are also modified ac-
cording to the generalized Harrisond22 scaling law and
Slater-Koster direction-cosine rules.16,17

The eigenvalues of the tight-binding Hamiltonian is o
tained with the Lanczos algorithm,18 which is a commonly
used iterative eigenvalue solver for large-dimension
sparse, Hermitian matrices, as is the case for our tig
binding Hamiltonian. At each Lanczos iteration, the matrix
projected into a lower-dimensional subspace known as
Krylov subspace. The reduced matrix is tridiagonal and
eigenvalues approximate those of the original matrix as
size of the Krylov subspace grows.
6-3
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IV. RESULTS AND DISCUSSION

A. Long-ranged strain field

An accurate strain profile is a prerequisite for t
electronic-structure calculation because the strain fi
strongly affects ionic potentials and thus changes the elec
Hamiltonian. In order to obtain an accurate strain profile
InAs/GaAs nanostructures, a sufficiently large GaAs bu
needs to be included in the simulation domain. Figure
shows the dramatic difference between the strain profiles
culated with a 3 nmthick buffer and a 15 nm thick buffer
The simulation with the small buffer underestimates
compressive strain inside the dot and misrepresents the s
in the buffer. The simulation with the large buffer yields th
relaxation of strain at the buffer surface. The result indica
that the 15 nm thick buffer is sufficiently large to accomm
date the strain relaxation that would occur in a realistica
sized system.

The saturation of the strain profile can be also monito
by examining the convergence of the resulting electro
structure. Figure 2 shows the energy gap between the gro
electron and hole states with respect to the buffer size u
for both strain and electronic-structure calculations. Both
strain profile and the electronic structure are calculated w
the periodic boundary condition. As the buffer thickness v
ies from 3 nm to 15 nm, the resulting energy gap increa
by about 72 meV~from 1.051 eV to 1.123 eV!. The large gap
change demonstrates the long-range effect of the strain
on the electronic structure. The exponential fit suggests
convergence of the gap to 1.125 eV as the buffer thickn
becomes infinite. Since the small buffer underestimates
strain inside the dot, the increase of the buffer thickness
sults in the increase of the dot strain. Under the compres

FIG. 1. Strain profiles for a lens-shaped InAs quantum dot w
diameter 15 nm and height 6 nm, embedded in 3 nm and 15
thick GaAs buffers. The hydrostatic strain component (exx1eyy

1ezz)/3 is plotted with respect to atomic position along the grow
direction from the substrate to the capping layer. The perio
boundary condition is imposed on the buffer surface. The sim
tion with the small buffer underestimates the compressive st
inside the dot by 0.005 in comparison with the simulation with t
large buffer. Furthermore, the small-buffer simulation predicts
tensile strain in the buffer while the large-buffer simulation predi
a compressive strain.
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hydrostatic strain, the bulk GaAs and InAs conductio
~valence-! band edge atG shifts up ~down!, as shown in
Figure 3. Following the trends, the lowest conduction~the
highest valence! electron energy of the strained nanostru
ture increases~decreases! as the buffer thickness increase
and the dot strain becomes stronger. These shifts of the e
tron energies lead to the overall increase of the energy g
Figures 1 and 2 clearly demonstrate the importance of a
ficiently large buffer size in the simulation domain in ord
to obtain both accurate strain profile and electronic structu

Although the strain calculation requires a large buffer,
accurate electronic structure can be obtained with a sma
buffer due to the finite extent of the localized electron wa
functions. Using a truncated buffer will ease the compu
tional requirements for the electronic-structure calculat

h
m

c
-
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a
s

FIG. 2. Energy gap between the ground electron and hole st
with respect to untruncated GaAs buffer thickness. The mode
system is an InAs dot with diameter 15 nm and height 6 nm, e
bedded in a GaAs buffer. Both strain profile and electronic struct
are calculated with the periodic boundary condition imposed on
untruncated buffer surface. The solid circle is the calculation res
and the line is an exponential fit. As the buffer thickness increa
and the strain in the dot saturates, the energy gap converge
1.125 eV.

FIG. 3. Conduction- and valence-band edges atG with respect
to hydrostatic strain for bulk InAs and GaAs. The compress
strain increases the direct band gap while the tensile strain
creases the gap.
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since the dimension of the Hamiltonian grows linearly w
the number of atoms included in the model. From here
the electronic structure is calculated with a truncated bu
while keeping the equilibrium atomic positions obtain
from the strain calculation using a 15 nm thick buffer a
implementing the boundary conditions addressed in Sec
The efficiency and reliability of each boundary condition a
systematically analyzed in terms of the elimination of no
physical surface states in Sec. IV B, the number of Lanc
iterations required for interior-state energy convergence
Sec. IV C, the insensitivity of the converged energy to
boundary energy shift in Sec. IV D, and the buffer size
quired for the energy convergence in Sec. IV E.

B. SurfaceÕinterface state elimination

One important criterion for a proper BC is the eliminatio
of nonphysical surface/interface states from the energy
gion of interest. Figure 4 presents the eigenvalues obta
from the Lanczos iterations when three different bound
conditions are applied to a 3 nmthick truncated buffer. First
to visualize the importance of having a proper boundary c
dition, the eigenvalues without any modification to t
boundary energies are plotted in Fig. 4~a!. When such a

FIG. 4. Eigenvalues of the Lanczos tridiagonal matrix vs
number of Lanczos iterations~a! without any modification to
boundary energies,~b! with the boundary condition of raising
surface-atom orbital energies~BC I!, and ~c! with the boundary
condition of raising dangling-bond energies~BC II!. The modeled
system is an InAs dot with diameter 15 nm and height 6 nm, e
bedded in GaAs. The strain is calculated with a 15 nm thick Ga
buffer, while the electronic structure is calculated with a trunca
buffer with thickness 3 nm. The energy shifts for the bound
condition are set to be~b! ds55 eV, dp53 eV, and ~c! dsp3

55 eV.
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trivial boundary condition is implemented, many surfa
states are formed, which prevents the Lanczos algori
from resolving eigenvalues for the physical interior stat
By comparison, Figs. 4~b! and 4~c! show that BC I and II
remove surface states and develop an energy gap. The en
shifts used in this calculation areds55 eV, dp53 eV, and
dsp355 eV. BC II efficiently eliminates all nonphysical su
face states in the middle of the gap between about 0.3 eV
1.2 eV. In contrast, BC I does not remove all the surfa
states. The dense spectrum of the remaining surface s
prevents the convergence of bound hole states below 0.3

BC III is also applied to the truncated buffer to test
efficiency in interface-state elimination. Figure 5 shows t
eigenvalues of the Lanczos tridiagonal matrix with the pe
odic boundary condition:~a! using a truncated buffer with
thickness 3 nm and~b! using an untruncated buffer with
thickness 3 nm. In the former the strain profile is calcula
with a 15 nm thick buffer and then the buffer is reduced to
nm to calculate the electronic structure, while in the lat
both the strain profile and electronic structure are calcula
with a 3 nm thick buffer. In both cases, the periodic boun
ary condition is imposed for not only the electronic-structu
calculation but also the strain profile. The periodic bound
condition with the truncated buffer results in many spurio
states in the middle of the gap, while that with the untru
cated buffer does not.

The midgap states in the truncated-buffer simulation
formed because of the nonplanar interface at the bounda
A lattice mismatch of 7% between InAs and GaAs induc
strain in both the InAs dot and the GaAs buffer. The stra
bends the boundary plane of the truncated buffer by as m
as 5% of the unstrained GaAs bond length~see Fig. 6!. When
the bent boundaries are connected by the periodic boun
condition, the bond between the atoms at the interface
significantly stretched or compressed. The strained bonds

-
s
d
y

FIG. 5. Eigenvalues of the Lanczos tridiagonal matrix vs t
number of Lanczos iterations with the periodic boundary condit
~BC III ! ~a! using the truncated buffer with thickness 3 nm and~b!
using the untruncated buffer with thickness 3 nm. The differen
between the two buffers lies in the equilibrium positions of atom
since the former buffer uses the result of the strain calculation w
a 15 nm thick buffer while the latter buffer uses that with a 3 nm
thick buffer. The strain-profile results for the two cases are show
Fig. 1.
6-5



e
an
ga
th
id
at
io
no
ra
cu

th
te

pr
t

th
tis
t

To
wi
th

ce
re
n
th
r-

te
fe

g
v
er
n
fo
I
a

b-

ce
ei-

ing
h of
ce

gy
e
ce

es

the
tes
eV.
to

g

nic
ge
en-

te
ry

atc
m
th

i-

eter

ift
gap
only

LEE, OYAFUSO, VON ALLMEN, AND KLIMECK PHYSICAL REVIEW B 69, 045316 ~2004!
sult in nonphysical ‘‘interface’’ states in the middle of th
gap. As shown in Fig. 3, strain dramatically change the b
structure of bulk GaAs—tensile strain reduces the band
while compressive strain increases the gap. Similarly,
strongly strained interface in the truncated buffer yields m
gap states. In contrast, the boundaries of the untrunc
buffer are smooth due to the periodic boundary condit
imposed on the strain calculation. As a result, it does
yield interface states. However, because of its inaccu
strain profile the resulting electronic structure is also inac
rate as discussed in Sec. IV A.

To avoid the unrealistic interface states induced by
truncated periodic BC, the atomic positions of the trunca
buffer need to be adjusted to flatten the interface.5 However,
the adjustment unavoidably leads to an inaccurate strain
file unless the truncated buffer is large enough for strain
saturate near the interface. We have experimented wi
partial relaxation of the boundary layers but found unsa
factory results—many interface states remain, because
partial relaxation is not sufficient to flatten the interface.
succeed in eliminating interface states, one should start
a larger buffer whose boundary is less strained so that
partial relaxation can lead to a flat boundary.

BC I and II do not require any adjustment to the interfa
of the truncated buffer, as opposed to BC III which requi
an artificial flattening of the interface. Therefore, we co
clude that the nonperiodic BC’s are more efficient than
periodic BC in terms of the elimination of surface or inte
face states with a smaller truncated buffer while accura
incorporating the strain profile resulting from a larger-buf
simulation.

C. Eigenvalue convergence speed

To investigate the efficiencies of BC I and II in resolvin
interior-state energies, the speed of the eigenvalue con
gence is measured in terms of the number of Lanczos it
tions required. Table I lists the number of Lanczos iteratio
required for a given number of converged eigenvalues
BC I and II. BC II results in a faster convergence than BC
For example, to acquire four eigenvalues, BC II requires h
as many iterations as BC I. The efficiency of BC II is attri

FIG. 6. Atomic positions at the boundary plane of the trunca
GaAs buffer: ~a! three-dimensional visualization of the bounda
plane and~b! a slice through a plane withz about 6 nm. The plane
is bent due to nonuniform strain generated by the lattice mism
between the InAs dot and GaAs buffer. The variation of the ato
positions along thex axis is about 5% of the unstrained bond leng
of 0.24 nm.
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uted to the elimination of the dense spectrum of surfa
states. In general, iterative eigenvalue solvers easily find
genvalues in a sparse spectrum, but show difficulty resolv
eigenvalues in a dense spectrum. Therefore, the searc
interior states is accelerated by the elimination of surfa
states from the interior-state spectrum.

D. Boundary energy shift

To implement BC I and II, appropriate boundary ener
shifts ds , dp , and dsp3 must be determined. The ultimat
goal in choosing the energy shift is to eliminate all surfa
states in the energy region of interest for interior states~e.g.,
within the band gap!. Figure 7 shows converged eigenvalu
with respect to the energy shiftdsp3 in BC II. While dsp3

53 eV leads to surface states in the middle of the gap,
energy shift larger than 5 eV eliminates all the surface sta
and leads to the eigenvalues converged within a few m
This indicates that the electronic structure is insensitive
the choice of the energy shift in BC II if the shift is bi
enough to remove all surface states.

In contrast, the effect of energy shifts on the electro
structure with BC I is highly unpredictable; a slight chan
of the shifts leads to a completely different Lanczos eig

d

h
ic

TABLE I. Number of Lanczos iterations required to obtain e
genvalues converged within 0.1meV with the boundary condition
of raising orbital energies of surface atoms~BC I! and with the
boundary condition of raising dangling-bond energies~BC II!. The
modeled system is a lens-shaped InAs quantum dot with a diam
15 nm and height 6 nm, embedded in a 3 nmthick GaAs buffer. The
strain profile is obtained with a 15 nm thick GaAa buffer.

No. of eigenvalues BC I BC II

1 1250 650
2 2320 1370
3 2400 1370
4 2420 1370

FIG. 7. ~a! Electron energy vs dangling-bond energy shiftdsp3

and ~b! variations of the ground and excited electron (e1,e2) and
hole (h1,h2) energies with respect to energy shift. An energy sh
larger than 5 eV eliminates surface states in the middle of the
between 0.2 and 1.2 eV. The electron and hole energies vary
by a few meV when the energy shift varies from 5 to 20 eV.
6-6
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value spectrum. For instance, changingdp from 3 eV to 4 eV
results in more surface states within the gap, as shown in
8. A wide range of positive and negative energy shiftsds and
dp was tested to achieve the best performance for elimina
surface states. However, no pair of testedds and dp within
20 eV succeeded in eliminating all the surface states an
yielding the band gap 1.1 eV which is given by both BC
with a truncated buffer@see Fig. 4~c!# and BC III with an
untruncated buffer@see Fig. 5~b!#. This inefficiency in re-
moving surface states is attributed to the truncation of c
nected bonds. BC I truncates both dangling bonds and c
nected bonds, while BC II truncates only the dangling bon
Since the connected bond should be connected to inte
atoms, the truncation of the connected bond will creat
dangling bond to the interior atoms, and the dangling bo
gives rise to surface states within the gap. This result s
gests that BC I has intrinsic difficulties in removing surfa
states.

E. Buffer size

To find a reasonable buffer size for accurate electron
structure calculations, the quantitative dependence of
electronic structure on the buffer size is examined. BC I
used since it provides the most efficient elimination of no
physical states. Figure 9 presents the energy gap betwee
lowest conduction electron and the highest valence elec
levels for different buffer thicknesses. The buffer thicknes

FIG. 8. Eigenvalues of the Lanczos tridiagonal matrix vs
number of Lanczos iterations with the boundary condition of rais
orbital energies~BC I! ~a! usingds55 eV anddp53 eV, ~b! using
ds55 eV and dp54 eV, and ~c! using ds520 eV and dp

520 eV. We have not found any pair ofds anddp that succeeds in
removing all the surface states in the middle of the gap which
between 0.2 and 1.2 eV.
04531
ig.

g

in

-
n-
s.
or
a
d
g-

-
e

s
-
the
n

s

defined as the distance between the faces of the buffer G
box and the InAs dot. When the buffer thickness is bigg
than 3 nm, the energy gap and the electron and hole en
spacings converge to 1123 meV, 56 meV, and 14 meV wit
1 meV, respectively. This convergence indicates that a 3 nm
thick buffer is large enough to obtain the electronic struct
with the accuracy of 1 meV. In general, the optimal buff
size varies with quantum dot size and electron level, a
hence one should determine the optimal size by monitor
the convergence of the energies for a desired accuracy.

V. CONCLUSIONS

In summary, we have investigated three types of bound
conditions for the electronic structure of a self-assemb
InAs dot embedded in GaAs within the framework of th
empirical tight-binding model. Two nonperiodic bounda
conditions demonstrate higher efficiency than the trunca
periodic boundary condition, in terms of the buffer size r
quired to eliminate nonphysical midgap states. Between
nonperiodic boundary conditions, BC II~raising dangling-
bond energies! more efficiently removes surface states th
BC I ~raising orbital energies of surface atoms!. Therefore,
BC II is identified as the most efficient boundary conditio
for eliminating surface states and achieving the converge
of interior-state energies with a truncated buffer.

The effect of the dangling-bond energy shift and t
buffer size on the electronic structure has been further ex
ined with the efficient BC II. An energy shift bigger than
eV efficiently removes all spurious states in the middle of
gap, and yields an energy gap insensitive to the further

g

is

FIG. 9. Variations of the energy gap (Egap) between the ground
electron and hole states, the energy spacing (DEelectron) between the
ground and the first excited electron states, and the energy spa
(DEhole) between the ground and the first excited hole states, w
respect to the truncated buffer thickness for an InAs quantum
with diameter 15 nm and height 6 nm. The boundary condition
raising dangling-bond energies~BC II! with dsp3510 eV is used for
this calculation.Egap, DEelectron, andDEhole with each buffer thick-
ness are subtracted by those with buffer thickness 5 nm to ob
the variations of these quantities. As the buffer thickness beco
larger than 3 nm,Egap, DEelectron, and DEhole converge to 1123
meV, 56 meV, and 14 meV within 1 meV, respectively.
6-7
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crease of the energy shift. For a lens-shaped InAs dot w
diameter 15 nm and height 6 nm, the GaAs buffer thickn
of 3 nm is large enough to obtain the electronic struct
with the accuracy of 1 meV.

While our boundary condition~BC II! has been develope
within the framework of empirical tight binding, it can b
extended to other models. An example is to use an empir
pseudopotential with a nonlocal part that is a sum of proj
tions on subspaces with well-defined orbital momentum.19 In
this case, a transformation of the basis set to thesp3 hybrid-
ized orbitals can be performed and an energy shift can
applied solely to the dangling bonds as presented in
work.

Boundary condition II with a truncated buffer takes a
vantage of the localization of the electron wave functions
a core nanostructure such as the InAs/GaAs quantum
illustrated in this paper. This scheme is not straightforwar
applicable to other types of heterostructures where elect
T.

on

s.

io
th
m

o

a
ut
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or holes are localized in the buffer. However, if the co
nanostructure is larger than the extent of the electron or h
wave function localized in the buffer, one can truncate
core region instead of the buffer. When one of the carri
~electron or hole! is localized in the core and the other carri
in the buffer, the core carrier can be modeled with a tru
cated buffer and the buffer carrier with a truncated core,
long as the coupling between the conduction and vale
bands is weak enough to treat the electron and hole Ha
tonians independently.
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